Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T08:49:18.677Z Has data issue: false hasContentIssue false

Graphene-based quantum Hall effect metrology

Published online by Cambridge University Press:  23 November 2012

Félicien Schopfer
Affiliation:
Laboratoire National de Métrologie et d’Essais, France; [email protected]
Wilfrid Poirier
Affiliation:
Laboratoire National de Métrologie et d’Essais, France; [email protected]
Get access

Abstract

In the past few decades, major improvements in electrical standards have come from quantum solid-state physics. The discovery of the Josephson effect and the integer quantum Hall effect (QHE) led to the realization of reproducible and universal voltage and resistance standards directly linked to Planck’s constant and the electron charge. In efforts to further improve the dissemination of quantum standards, graphene could be crucial for the development of a more convenient resistance standard that is able to benefit from recent helium-free cryogenic techniques. This fascinating material could also contribute to a revolutionary revision of the Système International of units by enabling convincing universality tests of the QHE. This article reports on metrological investigations of the QHE in graphene, with accuracy down to 10−10, demonstrating that a quantum resistance standard more robust than existing GaAs-based ones can be developed. The various results highlight the impacts of graphene quality and graphene–substrate interactions on quantization accuracy and the advantage for metrology of fabrication techniques that are scalable over large sizes such as epitaxial growth or chemical vapor deposition, although no single technique is yet clearly superior for achieving the final goal of an improved quantum standard for resistance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Klitzing, K.V., Phys. Rev. Lett. 45, 494 (1980).CrossRefGoogle Scholar
Poirier, W., Schopfer, F., Eur. Phys. J. Spec. Top. 172, 207 (2009).CrossRefGoogle Scholar
Poirier, W., Bounouh, A., Hayashi, K., Fhima, H., Piquemal, F., Genevès, G., André, J.P., J. Appl. Phys. 92, 2844 (2002).CrossRefGoogle Scholar
Piquemal, F., Jeckelmann, B., Eur. Phys. J. Spec. Top. 172 (2009).CrossRefGoogle Scholar
Eichenberger, A., Genevès, G., Gournay, P., Eur. Phys. J. Spec. Top. 172, 363 (2009).CrossRefGoogle Scholar
Poirier, W., Schopfer, F., Guignard, J., Thevenot, O., Gournay, P., C. R. Acad. Sci. 5, 171 (2011).Google Scholar
Penin, A.A., Phys. Rev. B 81, 089902(E) (2010).CrossRefGoogle Scholar
Penin, A.A., Phys. Rev. B 79, 113303 (2009).CrossRefGoogle Scholar
Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K., Rev. Mod. Phys. 81, 109 (2009).CrossRefGoogle Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, S.V.D.I.V., Firsov, A.A., Nature 438, 197 (2005).CrossRefGoogle Scholar
Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S.V., Stormer, H.L., Zeitler, U., Maan, G.S.B.J.C., Kim, P., Geim, A.K., Science 315, 1379 (2007).CrossRefGoogle Scholar
Nilsson, J., Castro Neto, A.H., Guinea, F., Peres, N.M.R., Phys. Rev. B 78, 045405 (2008).CrossRefGoogle Scholar
McCann, E., Fal’ko, V.I., Phys. Rev. Lett. 96, 086805 (2006).CrossRefGoogle Scholar
Poirier, W., Schopfer, F., Nat. Nanotechnol. 5, 171 (2010).CrossRefGoogle Scholar
Hartland, A., Jones, K., Williams, J.M., Gallagher, B.L., Galloway, T., Phys. Rev. Lett. 66, 969 (1991).CrossRefGoogle Scholar
Jeckelmann, B., Fasel, W., Jeanneret, B., IEEE Trans. Instrum. Meas. 44, 269 (1995).CrossRefGoogle Scholar
Giesbers, A.J.M., Rietveld, G., Houtzager, E., Zeitler, U., Yang, R., Novoselov, K.S., Geim, A.K., Maan, J.C., Appl. Phys. Lett. 93, 222109 (2008).CrossRefGoogle Scholar
Jeckelmann, B., Jeanneret, B., Inglis, D., Phys. Rev. B 55, 13124 (1997).CrossRefGoogle Scholar
Jeckelmann, B., Rufenacht, A., Jeanneret, B., Overney, F., von Campenhausen, A., Hein, G., IEEE Trans. Instrum. Meas. 50, 218 (2001).Google Scholar
Guignard, J., Leprat, D., Glattli, D.C., Schopfer, F., Poirier, W., Phys. Rev. B 85, 165420 (2012).CrossRefGoogle Scholar
Sarma, S.D., Adam, S., Hwang, E.H., Rossi, E., Rev. Mod. Phys. 83, 407 (2011).Google Scholar
Kedchedzi, K., Fal’ko, V.I., McCann, E., Altshuler, B.L., Phys. Rev. Lett. 98, 176806 (2007).Google Scholar
Mc Caughan, D.V., Murphy, V.T., J. Appl. Phys. 44, 2008 (1973).CrossRefGoogle Scholar
Chaubet, C., Geniet, F., Phys. Rev. B 58, 13015 (1998).CrossRefGoogle Scholar
Friedemann, M., Pierz, K., Stosch, R., Ahlers, F.J., Appl. Phys. Lett. 95, 102103 (2009).CrossRefGoogle Scholar
Woszczyna, M., Friedemann, M., Pierz, K., Weimann, T., Ahlers, F.J., J. Appl. Phys. 110, 043712 (2011).CrossRefGoogle Scholar
Poumirol, J.-M., Escoffier, W., Kumar, A., Raquet, B., Goiran, M., Phys. Rev. B 82, 121401(R) (2010).CrossRefGoogle Scholar
Woszczyna, M., Friedemann, M., Götz, M., Pesel, E., Pierz, K., Weimann, T., Ahlers, F.J., Appl. Phys. Lett. 100, 164106 (2012).Google Scholar
Tzalenchuk, A., Lara-Avila, S., Kalaboukhov, A., Paolillo, S., Syvajarvi, M.S., Yakimova, R., Kazakova, O., Janssen, T.J.B.M., Fal’ko, V., Kubatkin, S., Nat. Nanotechnol. 5, 186 (2010).CrossRefGoogle Scholar
Lara-Avila, S., Moth-Poulsen, K., Yakimova, R., Bjørnholm, T., Fal’ko, V., Tzalenchuk, A., Kubatkin, S., Adv. Mater. 23, 878 (2011).CrossRefGoogle Scholar
Janssen, T.J.B.M., Tzalenchuk, A., Yakimova, R., Kubatkin, S., Lara-Avila, S., Kopylov, S., Fal’ko, V.I., Phys. Rev. B 83, 233402 (2011).CrossRefGoogle Scholar
Baker, A.M.R., Alexander-Webber, J.A., Altebaeumer, T., Nicholas, R.J., Phys. Rev. B 85, 115403 (2012).CrossRefGoogle Scholar
Janssen, T.J.B.M., Fletcher, N.E., Goebel, R., Williams, J.M., Tzalenchuk, A., Yakimova, R., Kubatkin, S., Lara-Avila, S., Falko, V.I., New J. Phys. 13, 093026 (2011).CrossRefGoogle Scholar
Janssen, T.J.B.M., Williams, J.M., Fletcher, N.E., Goebel, R., Tzalenchuk, A., Yakimova, R., Lara-Avila, S., Kubatkin, S., Fal’ko, V.I., Metrologia 49, 294 (2012).CrossRefGoogle Scholar
Shen, T., Wu, W., Yu, Q., Richter, C.A., Elmquist, R., Newell, D., Chen, Y.P., Appl. Phys. Lett. 99, 232110 (2011).CrossRefGoogle Scholar
Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A.Y., Feng, R., Dai, Z., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A., J. Phys. Chem. B 108, 19912 (2004).CrossRefGoogle Scholar
Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S., Science 324, 1312 (2009).CrossRefGoogle Scholar
Delahaye, F., J. Appl. Phys. 73, 7914 (1993).CrossRefGoogle Scholar
Woszczyna, M., Friedemann, M., Dziomba, T., Weimann, Th., Ahlers, F.J., Appl. Phys. Lett. 99, 022112 (2011).CrossRefGoogle Scholar
Du, X., Skachko, I., Duerr, F., Luican, A., Andrei, E.Y., Nature 462, 192 (2009).CrossRefGoogle Scholar
Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.L., Hone, J., Nat. Nanotechnol. 5, 722 (2010).CrossRefGoogle Scholar
Waldmann, D., Jobst, J., Speck, F., Seyller, T., Krieger, M., Weber, H.B., Nat. Mater. 10, 357 (2011).CrossRefGoogle Scholar
Jouault, B., Camara, N., Jabakhanji, B., Caboni, A., Consejo, C., Godignon, P., Maude, D.K., Camassel, J., Appl. Phys. Lett. 100, 052102 (2012).CrossRefGoogle Scholar
Pallecchi, E., Ridene, M., Kazazis, D., Mathieu, C., Schopfer, F., Poirier, W., Mailly, D., Ouerghi, A., Appl. Phys. Lett. 100, 253109 (2012).CrossRefGoogle Scholar
Riedl, C., Coletti, C., Iwasaki, T., Zakharov, A.A., Starke, U., Phys. Rev. Lett. 103, 246804 (2010).CrossRefGoogle Scholar
Wu, X., Hu, Y., Ruan, M., Madiomanana, N.K., Hankinson, J., Sprinkle, M., Berger, C., de Heer, W.A., Appl. Phys. Lett. 95, 223108 (2009).CrossRefGoogle Scholar
Lara-Avila, S., Tzalenchuk, A., Kubatkin, S., Yakimova, R., Janssen, T.J.B.M., Cedergren, K., Bergsten, T., Fal’ko, V., Phys. Rev. Lett. 107, 166602 (2011).CrossRefGoogle Scholar
Schopfer, F., Poirier, W., J. Appl. Phys. 102, 054903 (2007).CrossRefGoogle Scholar