Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-08T00:03:02.190Z Has data issue: false hasContentIssue false

Graphene-based materials for energy applications

Published online by Cambridge University Press:  23 November 2012

Jun Liu
Affiliation:
Department of Macromolecular Science and Engineering, Case Western Reserve University; [email protected]
Yuhua Xue
Affiliation:
Department of Macromolecular Science and Engineering, Case Western Reserve University; [email protected]
Mei Zhang
Affiliation:
Department of Biomedical Engineering, Case Western Reserve University; [email protected]
Liming Dai
Affiliation:
Department of Macromolecular Science and Engineering, Case Western Reserve University; [email protected]
Get access

Abstract

Accelerating global energy consumption makes the development of clean and renewable alternative energy sources indispensable. Nanotechnology opens up new frontiers in materials science and engineering to meet this energy challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. Since the Nobel Prize winning research on graphene by Geim and Novoselov, considerable efforts have been made to exploit graphene as an energy material, and tremendous progress has been achieved in developing high-performance devices for energy conversion and energy storage. This article reviews recent progress in the research and development of graphene materials for advanced energy-conversion devices, including solar cells and fuel cells, and energy-storage devices, including supercapacitors and lithium-ion batteries, and discusses some challenges in this exciting field.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Doung, T.G., “FY 2002 Annual Progress Report for Energy Storage Research and Development” (FreedomCAR and Vehicle Technologies Program, US Department of Energy, Washington, DC, 2003).Google Scholar
Dai, L., Carbon Nanotechnology: Recent Developments in Chemistry, Physics, Materials Science and Device Applications (Elsevier Science, London, 2006).Google Scholar
Novoselov, K., Geim, A., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., Grigorieva, I., Firsov, A., Science 306, 666 (2004).CrossRefGoogle Scholar
Geim, A.K., Novoselov, K.S., Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L., McChesney, J.L., Ohta, T., Reshanov, S.A., Röhrl, J., Rotenberg, E., Schmid, A.K., Waldmann, D., Weber, H.B., Seyller, T., Nat. Mater. 8, 203 (2009).CrossRefGoogle Scholar
Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., Kong, J., Nano Lett. 9, 30 (2009).CrossRefGoogle Scholar
Eda, G., Chhowalla, M., Adv. Mater. 22, 2392 (2010).CrossRefGoogle Scholar
Lotya, M., Hernandez, Y., King, P.J., Smith, R.J., Nicolosi, V., Karlsson, L.S., Blighe, F.M., De, S., Wang, Z., McGovern, I.T., Duesberg, G.S., Coleman, J.N., J. Am. Chem. Soc. 131, 3611 (2009).CrossRefGoogle Scholar
Wang, X., Zhi, L., Tsao, N., Tomović, Ž., Li, J., Müllen, K., Angew. Chem., Int. Ed. 47, 2990 (2008).CrossRefGoogle Scholar
Qu, L., Liu, Y., Baek, J.B., Dai, L., ACS Nano 4, 1321 (2010).CrossRefGoogle Scholar
Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S., Nature 442, 282 (2006).CrossRefGoogle Scholar
Sun, Y., Wu, Q., Shi, G., Energy Environ. Sci. 4, 1113 (2011).Google Scholar
Huang, X., Yin, Z., Wu, S., Qi, X., He, Q., Zhang, Q., Yan, Q., Boey, F., Zhang, H., Small 7, 1876 (2011).CrossRefGoogle ScholarPubMed
Brownson, D.A.C., Kampouris, D.K., Banks, C.E., J. Power Sources 196, 4873 (2011).CrossRefGoogle Scholar
Pumera, M., Energy Environ. Sci. 4, 668 (2011).CrossRefGoogle Scholar
Liu, J., Cao, G., Yang, Z., Wang, D., Dubois, D., Zhou, X., Graff, G.L., Pederson, L.R., Zhang, J.G., ChemSusChem 1, 676 (2008).CrossRefGoogle Scholar
Liu, C., Li, F., Ma, L.-P., Cheng, H.-M., Adv. Mater. 22, E28 (2010).Google Scholar
Becquerel, A., C.R. Acad. Sci. 9, 561 (1839).Google Scholar
Bube, R.H., Photoelectronic Properties of Semiconductors (Cambridge University Press, Cambridge, UK, 1992).Google Scholar
Green, M.A., Emery, K., King, D.L., Igari, S., Warta, W., Prog. Photovoltaics Res. Appl. 12, 365 (2004).CrossRefGoogle Scholar
Swanson, R.M., Prog. Photovoltaics Res. Appl. 14, 443 (2006).CrossRefGoogle Scholar
Johnson, J., Chem. Eng. News 82, 13 (2004).CrossRefGoogle Scholar
Krebs, F.C., Polymer Photovoltaics: A Practical Approach (SPIE Press, Bellingham, WA, 2008).CrossRefGoogle Scholar
Sun, S., Sariciftci, N.S., Organic Photovoltaics: Mechanisms, Materials, and Devices (CRC Press, Boca Raton, FL, 2005).Google Scholar
Tang, C.W., Appl. Phys. Lett. 48, 183 (1986).CrossRefGoogle Scholar
Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J., Science 270, 1789 (1995).CrossRefGoogle Scholar
Steim, R., Koglera, F.R., Brabec, C.J., J. Mater. Chem. 20, 2499 (2010).CrossRefGoogle Scholar
Wang, Y., Tong, S.W., Xu, X.F., Özyilmaz, B., Loh, K.P., Adv. Mater. 23, 1514 (2011).CrossRefGoogle Scholar
Jo, G., Na, S.I., Oh, S.H., Lee, S., Kim, T.S., Wang, G., Choe, M., Park, W., Yoon, J., Kim, D.Y., Kahng, Y.H., Lee, T., Appl. Phys. Lett. 97, 213301 (2010).CrossRefGoogle Scholar
Bae, S., Kim, H., Lee, Y., Xu, X.F., Park, J.-S.. Zheng, Y., Balakrishnan, J., Lei, Y., Kim, H.R., Song, Y.I., Kim, Y.J., Özyilmaz, B., Ahn, J.H., Hong, B.H., Lijima, S., Nat. Nanotechnol. 5, 574 (2010).CrossRefGoogle Scholar
Li, S.S., Tu, K.H., Lin, C.C., Chen, C.W., Chhowalla, M., ACS Nano 4, 3169 (2010).CrossRefGoogle Scholar
Liu, J., Xue, Y.H., Gao, Y.X., Yu, D.S., Durstock, M., Dai, L.M., Adv. Mater. 24, 2228 (2012) .CrossRefGoogle Scholar
Yeo, S., Kim, J., Jeong, H.-G., Kim, D.-Y., Noh, Y.-J., Kim, S.-S., Ku, B.-C., Na, S.-I., Adv. Mater. 23, 4923 (2011).Google Scholar
Yu, D., Yang, Y., Durstock, M., Baek, J.B., Dai, L., ACS Nano 4, 5633 (2010).CrossRefGoogle Scholar
Yu, D., Park, K., Durstock, M., Dai, L., J. Phys. Chem. Lett. 2, 1113 (2011).CrossRefGoogle Scholar
Liu, Z., Liu, Q., Huang, Y., Ma, Y., Yin, S., Zhang, X., Sun, W., Chen, Y., Adv. Mater. 20, 3924 (2008).CrossRefGoogle Scholar
Li, Y., Hu, Y., Zhao, Y., Shi, G., Deng, L., Hou, Y., Qu, L., Adv. Mater. 6, 776 (2011).CrossRefGoogle Scholar
Kamat, P.V., J. Phys. Chem. C 112, 18737 (2008).CrossRefGoogle Scholar
Guo, C.X., Yang, H.B., Sheng, Z.M., Lu, Z.S., Song, Q.L., Li, C.M., Angew. Chem., Int. Ed. 49, 3014 (2010).CrossRefGoogle Scholar
O’Regan, B., Grätzel, M., Nature 353, 737 (1991).CrossRefGoogle Scholar
Yella, A., Lee, H.-W., Tsao, H.N., Yi, C., Chandiran, A.K., Nazeeruddin, M.K., Diau, E.W.-G., Yeh, C.-Y., Zakeeruddin, S.M., Grätzel, M., Science 334, 629 (2011).CrossRefGoogle Scholar
Wang, X., Zhi, L., Mullen, K., Nano Lett. 8, 323 (2008).CrossRefGoogle Scholar
Lin, T., Huang, F., Liang, J., Wang, Y., Energy Environ. Sci. 4, 862 (2011).CrossRefGoogle Scholar
Xu, Y., Bai, H., Lu, G., Li, C., Shi, G., J. Am. Chem. Soc. 130, 5856 (2008).CrossRefGoogle Scholar
Kavan, L., Yum, J.-H., Nazeeruddin, M.K., Grätzel, M., ACS Nano 5, 9171 (2011).CrossRefGoogle Scholar
Yang, N., Zhai, J., Wang, D., Chen, Y., Jiang, L., ACS Nano 4, 887 (2010).CrossRefGoogle Scholar
Tang, Y.-B., Lee, C.-S., Xu, J., Liu, Z.T., Chen, Z.-H., He, Z., Cao, Y.-L., Yuan, G., Song, H., Chen, L., Luo, L., Chen, H.-M., Zhang, W.-J., Bello, I., Lee, S.-T., ACS Nano 4, 3482 (2010).CrossRefGoogle Scholar
Yan, X., Cui, X., Li, B., Li, L.-S., Nano Lett. 10, 1869 (2010).CrossRefGoogle Scholar
Ramani, V., Electrochem. Soc. Interface 15, 41 (2006).CrossRefGoogle Scholar
Kou, R., Shao, Y.Y., Wang, D.H., Engelhard, M.H., Kwak, J.H., Wang, J., Viswanathan, V.V., Wang, C.M., Lin, Y.H., Wang, Y., Aksay, I.A., Liu, J., Electrochem. Commun. 11, 954 (2009).CrossRefGoogle Scholar
Jafri, R.I., Rajalakshmi, N., Ramaprabhu, S., J. Mater. Chem. 20, 7114 (2010).CrossRefGoogle Scholar
Dong, L.F., Gari, R.R.S., Li, Z., Craig, M.M., Hou, S.F., Carbon 48, 781 (2010).CrossRefGoogle Scholar
Gong, K., Du, F., Xia, Z., Durstock, M., Dai, L., Science 323, 760 (2009).CrossRefGoogle Scholar
Shao, Y.Y., Zhang, S., Engelhard, M.H., Li, G.S., Shao, G.C., Wang, Y., Liu, J., Aksay, I.A., Lin, Y.H., J. Mater. Chem. 20, 7491 (2010).CrossRefGoogle Scholar
Jeon, I.-Y., Yu, D., Bae, S.-Y., Choi, H.-J., Chang, D.W., Dai, L., Baek, J.-B., Chem. Mater. 23, 3987 (2011).CrossRefGoogle Scholar
Geng, D., Chen, Y., Chen, Y., Li, Y., Li, R., Sun, X., Ye, S., Knights, S., Energy Environ. Sci. 4, 760 (2011).CrossRefGoogle Scholar
Deng, D., Pan, X., Yu, L., Cui, Y., Jiang, Y., Qi, J., Li, W.-X., Fu, Q., Ma, X., Xue, Q., Sun, G., Bao, X., Chem. Mater. 23, 1188 (2011).CrossRefGoogle Scholar
Liu, Z.W., Peng, F., Wang, H.J., Yu, H., Zheng, W.X., Yang, J., Angew. Chem., Int. Ed. 50, 3257 (2011).CrossRefGoogle Scholar
Yang, L., Jiang, S.J., Yu, Y., Zhu, L., Chen, S., Wang, X.Z., Wu, Q., Ma, J., Ma, Y.W., Hu, Z., Angew. Chem., Int. Ed. 50, 7132 (2011).CrossRefGoogle Scholar
Yang, Z., Yao, Z., Li, G., Fang, G., Nie, H., Liu, Z., Zhou, X., Chen, X., Huang, S., ACS Nano 6, 205 (2012).CrossRefGoogle Scholar
Wang, S., Zhang, L., Xia, Z., Roy, A., Chang, D.W., Baek, J.-B., Dai, L., Angew. Chem., Int. Ed. 51, 4209 (2012).CrossRefGoogle Scholar
Wang, S., Yu, D., Dai, L., Chang, D.W., Baek, J.-B., ACS Nano 5, 6202 (2011).CrossRefGoogle Scholar
Zhang, L.L., Zhao, X.S., Chem. Soc. Rev. 38, 2520 (2009).CrossRefGoogle Scholar
Conway, B.E., Birss, V., Wojtowicz, J., J. Power Sources 66, 1 (1997).CrossRefGoogle Scholar
Frackowiak, E., Beguin, F., Carbon 39, 937 (2001).CrossRefGoogle Scholar
Zheng, J.P., Cygan, P.J., Jow, T.R., J. Electrochem. Soc. 142, 2699 (1995).CrossRefGoogle Scholar
Rudge, A., Davey, J., Raistrick, I., Gottesfeld, S., Ferraris, J.P., J. Power Sources 47, 89 (1994).CrossRefGoogle Scholar
Stoller, M.D., Park, S., Zhu, Y., An, J., Ruoff, R.S., Nano Lett. 8, 3498 (2008).CrossRefGoogle Scholar
Zhu, Y., Murali, S., Stoller, M.D., Velamakanni, A., Piner, R.D., Ruoff, R.S., Carbon 48, 2118 (2010).CrossRefGoogle ScholarPubMed
Zhu, Y., Stoller, M.D., Cai, W., Velamakanni, A., Piner, R.D., Chen, D., Ruoff, R.S., ACS Nano 4, 1227 (2010).CrossRefGoogle Scholar
Wang, Y., Shi, Z., Huang, Y., Ma, Y., Wang, C., Chen, M., Chen, Y., J. Phys. Chem. C 113, 13103 (2009).CrossRefGoogle Scholar
Yu, D., Dai, L., J. Phys. Chem. Lett. 1, 467 (2010).CrossRefGoogle Scholar
Dimitrakakis, G.K., Tylianakis, E., Foudakis, G.E., Nano Lett. 8, 3166 (2008).CrossRefGoogle Scholar
Du, F., Yu, D., Dai, L., Ganguli, S., Varshney, V., Roy, A.K., Chem. Mater. 23, 4810 (2011).CrossRefGoogle Scholar
Liang, M., Zhi, L., J. Mater. Chem. 19, 5871(2009).CrossRefGoogle Scholar
Zhou, G., Wang, D.-W., Li, F., Zhang, L., Li, N., Wu, Z.-S., Wen, L., Lu, G.Q., Cheng, H.-M., Chem. Mater. 22, 5306 (2010).CrossRefGoogle Scholar
Wang, G., Wang, B., Wang, X., Park, J., Dou, S., Ahn, H., Kim, K., J. Mater. Chem. 19, 8378 (2009).CrossRefGoogle Scholar
Pan, D., Wang, S., Zhao, B., Wu, M., Zhang, H., Wang, Y., Jiao, Z., Chem. Mater. 21, 3136 (2009).CrossRefGoogle Scholar
Takamura, T., Endo, K., Fu, L., Wu, Y., Lee, K.J., Matsumoto, T., Electrochim. Acta 53, 1055 (2007).CrossRefGoogle Scholar
Yoo, E., Kim, J., Hosono, E., Zhou, H., Kudo, T., Honma, I., Nano Lett. 8, 2277 (2008).CrossRefGoogle Scholar
Wu, Z.-S., Ren, W., Xu, L., Li, F., Cheng, H.-M., ACS Nano 5, 5463 (2011).CrossRefGoogle Scholar
Su, D.S., Schlogl, R., ChemSusChem 3, 136 (2010).CrossRefGoogle Scholar
Paek, S.M., Yoo, E.J., Honma, I., Nano Lett. 9, 72 (2009).CrossRefGoogle Scholar
Wu, Z.S., Ren, W.C., Wen, L., Gao, L.B., Zhao, J.P., Chen, Z.P., Zhou, G.M., Li, F., Cheng, H.M., ACS Nano 4, 3187 (2010).CrossRefGoogle Scholar
Wang, D.H., Choi, D.W., Li, J., Yang, Z.G., Nie, Z.M., Kou, R., Hu, D.H., Wang, C.M., Saraf, L.V., Zhang, J.G., Aksay, I.A., Liu, J., ACS Nano 3, 907 (2009).CrossRefGoogle Scholar
Chou, S.L., Wang, J.Z., Choucair, M., Liu, H.K., Stride, J.A., Dou, S.X., Electrochem. Commun. 12, 303 (2010).CrossRefGoogle Scholar