Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T04:16:02.105Z Has data issue: false hasContentIssue false

Graphene growth on metal surfaces

Published online by Cambridge University Press:  23 November 2012

N.C. Bartelt
Affiliation:
Sandia National Laboratories; [email protected]
K.F. McCarty
Affiliation:
Sandia National Laboratories; [email protected]
Get access

Abstract

The exceptional properties of graphene originate from its two-dimensional polymeric structure of sp2-bonded carbon. This feature also causes graphene to grow on metal substrates through mechanisms that are strikingly different from those of conventional heteroepitaxy. We provide here a brief review of graphene growth on metals, a subject with a rich history even before the recent explosion of interest in graphene. The current activities related to graphene growth on metals have been motivated by the need to develop low-cost, scalable processes for graphene synthesis and to understand how graphene–metal interfaces behave in devices. In this article, we examine the current state of the art, emphasizing the basic processes that distinguish graphene growth from normal crystal growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hagstrom, S., Lyon, H.B., Somorjai, G.A., Phys. Rev. Lett. 15, 491 (1965).CrossRefGoogle Scholar
Morgan, A.E., Somorjai, G.A., Surf. Sci. 12, 405 (1968).CrossRefGoogle Scholar
Grant, J.T., Haas, T.W., Surf. Sci. 21, 76 (1970).CrossRefGoogle Scholar
Novoselov, K.S., Int. J. Mod. Phys. B 25, 4081 (2011).CrossRefGoogle Scholar
Hamilton, J.C., Blakely, J.M., Surf. Sci. 91, 199 (1980).CrossRefGoogle Scholar
Oshima, C., Nagashima, A., J. Phys.: Condens. Matter 9, 1 (1997).Google Scholar
Gall, N.R., Rut’Kov, E.V., Tontegode, A.Y., Int. J. Mod. Phys. B 11, 1865 (1997).CrossRefGoogle Scholar
Wintterlin, J., Bocquet, M.L., Surf. Sci. 603, 1841 (2009).CrossRefGoogle Scholar
Mattevi, C., Kim, H., Chhowalla, M., J. Mater. Chem. 21, 3324 (2011).CrossRefGoogle Scholar
Batzill, M., Surf. Sci. Rep. 67, 83 (2012).CrossRefGoogle Scholar
Kittel, C., Introduction to Solid State Physics (Wiley, New York, 1986).Google Scholar
Vanin, M., Mortensen, J.J., Kelkkanen, A.K., Garcia-Lastra, J.M., Thygesen, K.S., Jacobsen, K.W., Phys. Rev. B 81, 081408 (2010).CrossRefGoogle Scholar
Land, T.A., Michely, T., Behm, R.J., Hemminger, J.C., Comsa, G., Surf. Sci. 264, 261 (1992).CrossRefGoogle Scholar
N’Diaye, A.T., Bleikamp, S., Feibelman, P.J., Michely, T., Phys. Rev. Lett. 97, 215501 (2006).CrossRefGoogle Scholar
Sun, J.B., Hannon, J.B., Tromp, R.M., Johari, P., Bol, A.A., Shenoy, V.B., Pohl, K., ACS Nano 4, 7073 (2010).CrossRefGoogle Scholar
Busse, C., Lazic, P., Djemour, R., Coraux, J., Gerber, T., Atodiresei, N., Caciuc, V., Brako, R., N’Diaye, A.T., Bluegel, S., Zegenhagen, J., Michely, T., Phys. Rev. Lett. 107 (2011).CrossRefGoogle Scholar
Borca, B., Barja, S., Garnica, M., Minniti, M., Politano, A., Rodriguez-Garcia, J.M., Hinarejos, J.J., Farias, D., Vazquez de Parga, A.L., Miranda, R., New J. Phys. 12 (2010).CrossRefGoogle Scholar
Lacovig, P., Pozzo, M., Alfe, D., Vilmercati, P., Baraldi, A., Lizzit, S., Phys. Rev. Lett. 103 (2009).Google Scholar
Shelton, J.C., Patil, H.R., Blakely, J.M., Surf. Sci. 43, 493 (1974).CrossRefGoogle Scholar
Vlassiouk, I., Regmi, M., Fulvio, P.F., Dai, S., Datskos, P., Eres, G., Smirnov, S., ACS Nano 5, 6069 (2011).CrossRefGoogle Scholar
Zhang, Y., Li, Z., Kim, P., Zhang, L.Y., Zhou, C.W., ACS Nano 6, 126 (2012).CrossRefGoogle Scholar
Perdereau, J., Rhead, G.E., Surf. Sci. 24, 555 (1971).CrossRefGoogle Scholar
Wofford, J.M., Nie, S., McCarty, K.F., Bartelt, N.C., Dubon, O.D., Nano Lett. 10, 4890 (2010).CrossRefGoogle Scholar
May, P.W., Philos. Trans. R. Soc. London, Ser. A 358, 473 (2000).CrossRefGoogle Scholar
McCarty, K.F., Feibelman, P.J., Loginova, E., Bartelt, N.C., Carbon 47, 1806 (2009).CrossRefGoogle Scholar
Loginova, E., Bartelt, N.C., Feibelman, P.J., McCarty, K.F., New J. Phys. 10, 093026 (2008).CrossRefGoogle Scholar
Coraux, J., N’Diaye, A.T., Engler, M., Busse, C., Wall, D., Buckanie, N., Heringdorf, F.J.M.Z., van Gastei, R., Poelsema, B., Michely, T., New J. Phys. 11, 023006 (2009).CrossRefGoogle Scholar
Sutter, P.W., Flege, J.-I., Sutter, E.A., Nat. Mater. 7, 406 (2008).CrossRefGoogle Scholar
Yu, Q., Jauregui, L.A., Wu, W., Colby, R., Tian, J., Su, Z., Cao, H., Liu, Z., Pandey, D., Wei, D., Chung, T.F., Peng, P., Guisinger, N.P., Stach, E.A., Bao, J., Pei, S.-S., Chen, Y.P., Nat. Mater. 10, 443 (2011).CrossRefGoogle Scholar
Michely, T., Krug, J., Islands, Mounds, and Atoms: Patterns and Processes in Crystal Growth Far from Equilibrium (Springer-Verlag, Berlin, 2003).Google Scholar
Chernov, A.A., J. Cryst. Growth 264, 499 (2004).CrossRefGoogle Scholar
Wu, P., Zhang, W.H., Li, Z.Y., Yang, J.L., Hou, J.G., J. Chem. Phys. 133 (2010).Google Scholar
Loginova, E., Bartelt, N.C., Feibelman, P.J., McCarty, K.F., New J. Phys. 11, 063046 (2009).CrossRefGoogle Scholar
Zangwill, A., Vvedensky, D.D., Nano Lett. 11, 2092 (2011).CrossRefGoogle Scholar
Wang, B., Ma, X., Caffio, M., Schaub, R., Li, W.-X., Nano Lett. 11, 424 (2011).CrossRefGoogle Scholar
Williams, E.D., Bartelt, N.C., Ultramicroscopy 31, 36 (1989).CrossRefGoogle Scholar
Coraux, J., N’Diaye, A.T., Busse, C., Michely, T., Nano Lett. 8, 565 (2008).CrossRefGoogle Scholar
Geng, D., Wu, B., Guo, Y., Huang, L., Xue, Y., Chen, J., Yu, G., Jiang, L., Hu, W., Liu, Y., Proc. Natl. Acad. Sci. U.S.A. 109, 7992 (2012).CrossRefGoogle Scholar
Starodub, E., Maier, S., Stass, I., Bartelt, N.C., Feibelman, P.J., Salmeron, M., McCarty, K.F., Phys. Rev. B 80 (2009).CrossRefGoogle Scholar
Günther, S., Dänhardt, S., Wang, B., Bocquet, M.L., Schmitt, S., Wintterlin, J., Nano Lett. 11, 1895 (2011).CrossRefGoogle Scholar
Sutter, E., Albrecht, P., Sutter, P., Appl. Phys. Lett. 95 (2009).CrossRefGoogle Scholar
Murata, Y., Petrova, V., Kappes, B.B., Ebnonnasir, A., Petrov, I., Xie, Y.H., Ciobanu, C.V., Kodambaka, S., ACS Nano 4, 6509 (2010).CrossRefGoogle Scholar
Nie, S., Wofford, J.M., Bartelt, N.C., Dubon, O.D., McCarty, K.F., Phys. Rev. B 84, 155425 (2011).CrossRefGoogle Scholar
Jin, L., Fu, Q., Zhang, H., Mu, R.T., Zhang, Y.H., Tan, D.L., Bao, X.H., J. Phys. Chem. C 116, 2988 (2012).CrossRefGoogle Scholar
Wu, W., Jauregui, L.A., Su, Z., Liu, Z., Bao, J., Chen, Y.P., Yu, Q., Adv. Mater. 23, 4898 (2011).CrossRefGoogle Scholar
Li, X., Magnuson, C.W., Venugopal, A., Tromp, R.M., Hannon, J.B., Vogel, E.M., Colombo, L., Ruoff, R.S., J. Am. Chem. Soc. 133, 2816 (2011).CrossRefGoogle Scholar
Frank, F.C., in Proceedings of an International Conference on Crystal Growth, Cooperstown, NY, Doremus, R.H., Roberts, B.W., Turnbull, D., Eds. (Wiley, New York, 1958), p. 411.Google Scholar
Luo, Z., Kim, S., Kawamoto, N., Rappe, A.M., Johnson, A.T.C., ACS Nano 5, 9154 (2011).CrossRefGoogle Scholar
Wofford, J.M., Starodub, E., Walter, A.L., Nie, S., Bostwick, A., Bartelt, N.C., Thürmer, K., Rotenberg, E., McCarty, K.F., Dubon, O.D., New J. Phys. 14, 053008 (2012).CrossRefGoogle Scholar
Kellogg, G.L., Surf. Sci. Rep. 21, 1 (1994).CrossRefGoogle Scholar
Nie, S., Walter, A.L., Bartelt, N.C., Starodub, E., Bostwick, A., Rotenberg, E., McCarty, K.F., ACS Nano 5, 2298 (2011).CrossRefGoogle Scholar
Tontegode, A.Y., Prog. Surf. Sci. 38, 201 (1991).CrossRefGoogle Scholar
Cui, Y., Fu, Q., Bao, X., Phys. Chem. Chem. Phys. 12, 5053 (2010).CrossRefGoogle Scholar
Odahara, G., Otani, S., Oshima, C., Suzuki, M., Yasue, T., Koshikawa, T., Surf. Sci. 605, 1095 (2011).CrossRefGoogle Scholar
Sutter, P.W., Albrecht, P.M., Sutter, E.A., Appl. Phys. Lett. 97 (2010).CrossRefGoogle Scholar
Li, X.S., Cai, W.W., An, J.H., Kim, S., Nah, J., Yang, D.X., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S., Science 324, 1312 (2009).CrossRefGoogle Scholar
Su, C.-Y., Lu, A.-Y., Wu, C.-Y., Li, Y.-T., Liu, K.-K., Zhang, W., Lin, S.-Y., Juang, Z.-Y., Zhong, Y.-L., Chen, F.-R., Li, L.-J., Nano Lett. 11, 3612 (2011).CrossRefGoogle Scholar
Bae, S., Kim, H., Lee, Y., Xu, X.F., Park, J.S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y.J., Kim, K.S., Ozyilmaz, B., Ahn, J.H., Hong, B.H., Iijima, S., Nat. Nanotechnol. 5, 574 (2010).CrossRefGoogle Scholar
Barrett, C.S., Massalski, T.B., Structure of Metals (McGraw-Hill, New York, 1980).Google Scholar
Rhead, G.E., C.R. Hebd. Seances Acad. Sci. C 268, 1817 (1969).Google Scholar
Ohta, T., Bostwick, A., Seyller, T., Horn, K., Rotenberg, E., Science 313, 951 (2006).CrossRefGoogle Scholar
Nie, S., Wu, W., Xing, S., Yu, Q., Bao, J., Pei, S.-S., McCarty, K.F., New J. Phys. 14, 093028 (2012).Google Scholar
Huang, P.Y., Ruiz-Vargas, C.S., van der Zande, A.M., Whitney, W.S., Levendorf, M.P., Kevek, J.W., Garg, S., Alden, J.S., Hustedt, C.J., Zhu, Y., Park, J., McEuen, P.L., Muller, D.A., Nature 469, 389 (2011).CrossRefGoogle Scholar