Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T08:47:39.600Z Has data issue: false hasContentIssue false

Grain Growth in Si3 N4-Based Materials

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The growth of Si3N4 grains in the usual sintering process occurs in an oxynitride liquid formed by reactions between sintering additives, impurity SiO2, and Si3N4. The shape of an Si3N4 grain in the liquid matrix is a hexagonal rod, although the aspect ratio (c/a) varies considerably, depending on the processing conditions and final crystalline forms of α or β. Figure 1 shows two types of microstructures observed in sintered Si3N4-based materials. The microstructure shown in Figure la is normal with unimodal grain-size distribution and that of Figure 1b is abnormal with a microstructure of exceptionally large elongated grains within fine matrix grains. When normal grain growth occurs, the microstructure varies little with sintering time, and the development may be described by a simple law. But, when abnormal grain growth occurs, a duplex grain structure with a bimodal grainsize distribution results; then no simple kinetic law can describe the microstructure development.

The grain growth in the microstructures shown in Figure 1 exemplifies the growth of faceted grains in a liquid matrix. The grain growth in a matrix occurs via growth of larger grains and dissolution of smaller ones by material transport through the liquid phase. The driving force of the material transport for an individual grain is determined by the difference between its size and the critical grain size, which is invariant at the moment of observation. Since the driving force is usually low, the volume change of each grain is relatively slow and analogous to the crystal growth or dissolution in a liquid matrix under low super- or undersaturation. Therefore, knowledge of the growth behavior of faceted crystals under low supersaturation in a liquid may provide fundamental understanding of the grain growth in Si3N4-based materials.

Type
Silicon-Based Ceramics
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Popper, P., in Factors in Densifkation and Sin-tering of Oxide and Non-Oxide Ceramics, edited by Sōmiya, S. and Saito, S. (Gakujutsu Bunken Fukyu-Kai, Tokyo, 1979) p. 19.Google Scholar
2.Hampshire, S., Park, H.K., Thompson, D.P., and Jack, K.H., Nature 274 (1978) p. 880.CrossRefGoogle Scholar
3.Hwang, S-L. and Chen, I-W., J. Am. Ceram. Soc. 77 (1994) p. 165.CrossRefGoogle Scholar
4.Lange, F.F., J. Am. Ceram. Soc. 62 (1979) p. 428.CrossRefGoogle Scholar
5.Ekström, T. and Nygren, M., J. Am. Ceram. Soc. 75 (1992) p. 259.CrossRefGoogle Scholar
6.Pyzik, A.J. and Beaman, D.R., J. Am. Ceram. Soc. 76 (1993) p. 2737.CrossRefGoogle Scholar
7.Mitomo, M., unpublished.Google Scholar
8.Boskovic, S., Gaukler, L.J., Petzow, G., and Tien, T-Y., Powder Metall. Int. 11 (1979) p. 169.Google Scholar
9.Sun, W-Y., Tien, T-Y., and Yen, T-S., J. Am. Ceram. Soc. 74 (1991) p. 2547.CrossRefGoogle Scholar
10.Weiss, J. and Kaysser, W.A., in Progress in Nitrogen Ceramics, edited by Riley, F.L. (Martinus Nijhoff Publisher, The Hague, 1983) p. 169.CrossRefGoogle Scholar
11.Hampshire, S. and Jack, K.H., Proc. Brit. Ceram. Soc. 31 (1981) p. 37.Google Scholar
12.Chatfield, C., Ekstrom, T., and Mikus, M., J. Mater. Sci. 21 (1986) p. 2297.CrossRefGoogle Scholar
13.Ingelström, N. and Ekström, T., J. Phys. (Les Ulis, France) 47 (1986) p. 347.Google Scholar
14.Krämer, M., Hoffmann, M.J., and Petzow, G., J. Am. Ceram. Soc. 76 (1993) p. 2778.CrossRefGoogle Scholar
15.Hirosaki, N., Akimune, Y., and Mitomo, M., J. Am. Ceram. Soc. 77 (1994) p. 1093.CrossRefGoogle Scholar
16.Hwang, S-L. and Chen, I-W., J. Am. Ceram. Soc. 77, p. 1711.CrossRefGoogle Scholar
17.Hwang, S-L. and Chen, I-W., J. Am. Ceram. Soc. 77, p. 1719.CrossRefGoogle Scholar
18.Kramer, M., J. Am. Ceram. Soc. 76 (1993) p. 1627.CrossRefGoogle Scholar
19.Han, S-M., Kang, S-J.L., and Lee, Y-T., J. Euro. Ceram. Soc. 12 (1993) p. 431.CrossRefGoogle Scholar
20.Han, S-M. and Kang, S-J.L., in Proc. 1st Int. Symp. on the Sci. Eng. Ceramics, edited by Kimura, S. and Niihara, K. (The Ceramic Society of Japan, Tokyo, 1991) p. 83.Google Scholar
21.Kim, S.S. and Yoon, D.N., Acta Metall. 31 (1983) p. 1151.Google Scholar
22.Kang, S-J.L., Kaysser, W.A., Petzow, G., and Yoon, D.N., Acta Metall. 33 (1985) p. 1919.CrossRefGoogle Scholar
23.Bonnell, D.A., Ruhle, M., and Tien, T-Y., J. Am. Ceram. Soc. 69 (1986) p. 623.CrossRefGoogle Scholar
24.Kim, N-K., Kim, D-Y., Kranzmann, A., Bischoff, E., and Kang, S-J.L., J. Mater. Sci. 28 (1993) p. 4355.CrossRefGoogle Scholar
25.Lifshitz, I.M. and Slyozov, W., J. Phys. Chem. Solids 19 (1961) p. 35.CrossRefGoogle Scholar
26.Wagner, C., Z. Elektrochem. 65 (1961) p. 581.Google Scholar
27.Ardell, A.J., Acta Metall. 20 (1972) p. 61.CrossRefGoogle Scholar
28.Brailsford, A.D. and Wynblatt, P., Acta Metall., 27 (1979) p. 489.CrossRefGoogle Scholar
29.Sarian, S. and Weart, H.W., J. Appl. Phys. 37 (1966) p. 1675.CrossRefGoogle Scholar
30.Davies, C.K.L., Nash, P., and Stevens, R.N., Acta Metall. 28 (1980) p. 179.CrossRefGoogle Scholar
31.Burton, W.K., Cabrera, N., and Frank, E.C., Philos. Trans. R. Soc. London A243 (1951) p. 299.Google Scholar
32.Hirth, J.P. and Pound, G.M., Condensation and Evaporation (Pergamon Press, Oxford, 1963) p. 77.Google Scholar
33.Flemings, M.C., Solidification Processing (McGraw-Hill Inc., New York, 1974) p. 301.Google Scholar
34.Cheronov, A.A. and Nishinaga, T., in Morphology of Crystals, edited by Sunagawa, I. (Terra Scientific Publishing Co., Tokyo, 1987) p. 207.Google Scholar
35.Hwang, N.M., Park, Y.J., and Yoon, D.Y., private communication.Google Scholar
36.Hohnke, H., Hwang, C.M., and Tien, T-Y., in Electron Microscopy and Analysis, edited by Tatork, G.J. (Adam Hilger, England, 1988) p. 285.Google Scholar
37.Hwang, C.J. and Tien, T-Y., in Preparation and Properties of Silicon Nitride Based Materials, edited by Bonnell, D.A. and Tien, T-Y. (Trans Tech Publications, Zürich, 1989) p. 84.Google Scholar
38.Lai, K-R. and Tien, T-Y., J. Am. Ceram. Soc. 76 (1993) p. 91.CrossRefGoogle Scholar
39.Hirao, K., Nagaoka, T., Brito, M.E., and Kanzaki, S., J. Am. Ceram. Soc. 77 (1994) p. 1857.CrossRefGoogle Scholar
40.Wotting, G., Kanka, B., and Ziegler, G., in Non-Oxide Technical and Engineering Ceramics, edited by Hampshire, S. (Elsevier Applied Science, London, 1986) p. 83.CrossRefGoogle Scholar
41.Kramer, M., Hoffmann, M.J., and Petzow, G., Acta Metall. 41 (1993) p. 2939.CrossRefGoogle Scholar
42.Han, S-M. and Kang, S-J.L., J. Am. Ceram. Soc. 76 (1993) p. 3178.CrossRefGoogle Scholar
43.Einarsrud, M-A. and Mitomo, M., J. Am. Ceram. Soc. 76 p. 1624.CrossRefGoogle Scholar
44.Lee, D-D., Kang, S-J.L., and Yoon, D.N., J. Am. Ceram. Soc. 71 (1988) p. 803.CrossRefGoogle Scholar
45.Hohnke, H. and Tien, T-Y., in Progress in Nitrogen Ceramics, edited by Riley, F.L. (Martinus Nijhoff Publisher, The Hague, 1983) p. 101.CrossRefGoogle Scholar
46.Morgan, P.E.D., in Nitrogen Ceramics, edited by Riley, F.L. (Noordhoff, The Netherlands, 1977) p. 23.CrossRefGoogle Scholar
47.Warren, R. and Waldron, M.B., Powder Metall. 15 (1972) p. 166.CrossRefGoogle Scholar
48.Warren, R., J. Mater. Sci. 7 (1972) p. 1434.CrossRefGoogle Scholar
49.Mitomo, M. and Uenosono, S., J. Am. Ceram. Soc. 75 (1992) p. 103.CrossRefGoogle Scholar
50.Hirosaki, N., Akimune, Y., and Mitomo, M., J. Am. Ceram. Soc. 76 (1993) p. 1892.CrossRefGoogle Scholar
51.Hirosaki, N., Akimune, Y., and Mitomo, M., in Silicon Nitride Ceramics: Scientific and Technological Advances, edited by Chen, I-W., Becher, P.F., Mitomo, M., Petzow, G., and Yen, T-S. (Mater. Res. Soc. Symp. Proc. 287, Pittsburgh, PA, 1993) p. 405.Google Scholar
52.Yoon, D.N. and Huppmann, W.J., Acta Metall. 27 (1979) p. 693.CrossRefGoogle Scholar
53.Kang, S-J.L., Han, S-M., Lee, D-D., and Yoon, D.N., MRS Int. Mtg. Advanced Materials, Vol. 5 (Tokyo, 1989) p. 63.Google Scholar
54.Lee, D-D., PhD thesis, KAIST, 1987.Google Scholar
55.Han, S-M., Lee, S-M., and Kang, S-J.L., in Proc. 3rd IUMRS Int. Conf. Advanced Materials (Tokyo, 1993).Google Scholar
56.Lee, D-D., Kang, S-J.L., Petzow, G., and Yoon, D.N., J. Am. Ceram. Soc. 73 (1990) p. 767.CrossRefGoogle Scholar
57.Mitomo, M., Tsutsumi, M., Tanaka, H., Uenosono, S., and Saito, F., J. Am. Ceram. Soc. 73 (1990) p. 2441.CrossRefGoogle Scholar