Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T06:13:26.539Z Has data issue: false hasContentIssue false

Giant piezoelectricity in PMN-PT thin films: Beyond PZT

Published online by Cambridge University Press:  12 November 2012

Seung-Hyub Baek
Affiliation:
Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul; [email protected]
Mark S. Rzchowski
Affiliation:
Physics Department, University of Wisconsin–Madison; [email protected]
Vladimir A. Aksyuk
Affiliation:
Center for Nanoscale Science and Technology, National Institute of Standards and Technology; [email protected]
Get access

Abstract

Microelectromechanical systems (MEMS) incorporating piezoelectric layers provide active transduction between electrical and mechanical energy, which enables highly sensitive sensors and low-voltage driven actuators surpassing the passive operation of electrostatic MEMS. Several different piezoelectric materials have been successfully integrated into MEMS structures, most notably Pb(Zr,Ti)O3. Piezoelectric materials with larger piezoelectric response, such as the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT), would enable further miniaturization. However, this has long been hampered by the difficulties in the synthesis of these materials. This article reviews recent successes not only in synthesizing high-quality epitaxial PMN-PT heterostructures on Si, but also in fabricating PMN-PT microcantilevers, which retain the piezoelectric properties of bulk PMN-PT single crystals. These epitaxial heterostructures provide a platform to build MEMS and nanoelectromechanical system devices that function with large displacement at low drive voltages, such as ultrasound medical imagers, micro-fluidic control, piezotronics, and energy harvesting.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Uchino, K., Piezoelectric Actuators and Ultrasonic Motors (Kluwer Academic, Boston, 1996).CrossRefGoogle Scholar
Judy, J., Smart Mater. Struct. 10, 1115 (2001).CrossRefGoogle Scholar
Trolier-McKinstry, S., Muralt, P., J. Electroceram. 12, 7 (2004).CrossRefGoogle Scholar
Muralt, P., J. Am. Ceram. Soc. 91, 1385 (2008).CrossRefGoogle Scholar
Muralt, P., Polcawich, R., Trolier-McKinstry, S., MRS Bull. 34, 658 (2009).CrossRefGoogle Scholar
Isarakorn, D., Sambri, A., Janphuang, P., Briand, D., Gariglio, S., Triscone, J.M., Buy, F., Reiner, J.W., Ahn, C.H., de Rooij, N.F., J. Micromech. Microeng. 20, 055008 (2010).CrossRefGoogle Scholar
Ramesh, R., Schlom, D.G., Science 296, 1975 (2002).CrossRefGoogle ScholarPubMed
Akai, D., Yokawa, M., Hirabayashi, K., Matsushita, K., Sawada, K., Ishida, M., Appl. Phys. Lett. 86, 202906 (2005).CrossRefGoogle Scholar
Nguyen, M.D., Vu, H.N., Blank, D.H.A., Rijnders, G., Nanosci. Nanotechnol. 2, 015005 (2011).Google Scholar
Nguyen, M.D., Nazeer, H., Karakaya, K., Pham, S.V., Steenwelle, R., Dekkers, M., Abelmann, L., Blank, D.H.A., Rijnders, G., J. Micromech. Microeng. 20, 085022 (2010).CrossRefGoogle Scholar
Sharma, A.K., Narayan, J., Jin, C., Kvit, A., Chattopadhyay, S., Lee, C., Appl. Phys. Lett. 76, 1458 (2000).CrossRefGoogle Scholar
Eom, C.B., Cava, R.J., Fleming, R.M., Phillips, J.M., Vandover, R.B., Marshall, J.H., Hsu, J.W.P., Krajewski, J.J., Peck, W.F., Science 258, 1766 (1992).CrossRefGoogle Scholar
Eom, C.B., Vandover, R.B., Phillips, J.M., Werder, D.J., Marshall, J.H., Chen, C.H., Cava, R.J., Fleming, R.M., Fork, D.K., Appl. Phys. Lett. 63, 2570 (1993).CrossRefGoogle Scholar
Li, Y.L., Choudhury, S., Liu, Z.K., Chen, L.Q., Appl. Phys. Lett. 83, 1608 (2003).CrossRefGoogle Scholar
Park, S.E., Shrout, T.R., J. Appl. Phys. 82, 1804 (1997).CrossRefGoogle Scholar
Park, S.E., Shrout, T.R., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 1140 (1997).CrossRefGoogle Scholar
Yokoyama, S., Okamoto, S., Okamoto, S., Funakubo, H., Matsuda, H., Iijima, T., Saito, K., Okino, H., Yamamoto, T., J. Appl. Phys. 98, 086112 (2005).CrossRefGoogle Scholar
Davis, M., J. Electroceram. 19, 25 (2007).CrossRefGoogle Scholar
Shrout, T.R., Halliyal, A., Am. Ceram. Soc. Bull. 66, 704 (1987).Google Scholar
Baek, S.H., Park, J., Kim, D.M., Aksyuk, V., Bu, S.D., Das, R.R., Felker, D.A., Lettieri, J., Vaithyanathan, V., Bassiri-Gharb, N., Bharadwaja, S.S.N., Chen, Y.B., Sun, H.P., Jang, H.W., Kreft, D.J., Nagarajan, V., Streiffer, S.K., Ramesh, R., Pan, X.Q., Trolier-McKinstry, S., Schlom, D.G., Rzchowski, M.S., Blick, R., Eom, C.B., Science 334, 958 (2011).CrossRefGoogle Scholar
Das, R.R., Kim, D.M., Baek, S.H., Zavaliche, F., Yang, Y., Ke, X., Streiffer, S.K., Rzchowski, M., Ramesh, R., Pan, X.Q., Eom, C.B., Appl. Phys. Lett. 88, 242904 (2006).CrossRefGoogle Scholar
Baek, S.H., Jang, H.W., Folkman, C.M., Li, Y.L., Winchester, B., Zhang, J.X., He, Q., Chu, Y.H., Nelson, C.T., Rzchowski, M.S., Pan, X.Q., Ramesh, R., Chen, L.Q., Eom, C.B., Nat. Mater. 9, 309 (2010).CrossRefGoogle Scholar
Bu, S., Lee, M.K., Eom, C.B., Tian, W., Pan, X.Q., Streiffer, S.K., Krajewski, J.J., Appl. Phys. Lett. 79, 3482 (2001).CrossRefGoogle Scholar
McKee, R.A., Walker, F.J., Chisholm, M.F., Phys. Rev. Lett. 81, 3014 (1998).CrossRefGoogle Scholar
Liang, Y., Wei, Y., Hu, X.M., Yu, Z., Droopad, R., Li, H., Moore, K., J. Appl. Phys. 96, 3413 (2004).CrossRefGoogle Scholar
Lettieri, J., PhD thesis, Pennsylvania State University, University Park, 2002; http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD—202/index.html.Google Scholar
Eom, C.B., Sun, J.Z., Yamamoto, K., Marshall, A.F., Luther, K.E., Geballe, T.H., Laderman, S.S., Appl. Phys. Lett. 55, 595 (1989).CrossRefGoogle Scholar
Grossmann, M., Lohse, O., Bolten, D., Boettger, U., Schneller, T., Waser, R., J. Appl. Phys. 92, 2680 (2002).CrossRefGoogle Scholar
Warren, W.L., Pike, G.E., Vanheusden, K., Dimos, D., Tuttle, B.A., Robertson, J., J. Appl. Phys. 79, 9250 (1996).CrossRefGoogle Scholar
Shepard, J.F. Jr., Moses, P.J., Trolier-McKinstry, S., Sens. Actuators 71, 133 (1998).CrossRefGoogle Scholar
Roundy, S., J. Intell. Mater. Syst. Struct. 16, 809 (2005).CrossRefGoogle Scholar
Dutoit, N.E., Wardle, B.L., Kim, S.G., Integr. Ferroelectr. 71, 121 (2005).CrossRefGoogle Scholar
Cook-Chennault, K.A., Thambi, N., Sastry, A.M., Smart Mater. Struct. 17, 43001 (2008).CrossRefGoogle Scholar
Elfrink, R., Kamel, T.M., Goedbloed, M., Matova, S., Hohlfeld, D., van Andel, Y., van Schaijk, R., J. Micromech. Microeng. 19, 094005 (2009).CrossRefGoogle Scholar
Kamel, T.M., Elfrink, R., Renaud, M., Hohland, D., Goedbloed, M., de Nooijer, C., Jambunathan, M., van Schaijk, R., J. Micromech. Microeng. 20, 105023 (2010).CrossRefGoogle Scholar
Dubois, M.A., Muralt, P., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 5, 1169 (1998).CrossRefGoogle Scholar
Kim, I., Kim, H., Griggio, F., Tutwiler, R.L., Jackson, T.N., Trolier-McKinstry, S., Choi, K., IEEE Trans. Biomed. Circuits Syst. 3, 293 (2009).CrossRefGoogle Scholar
Akarvardar, K., Eggimann, C., Tsamados, D., Chauhan, Y.S., Wan, G.C., Lonescu, A.M., Howe, R.T., Wong, H.S.P., IEEE Trans. Electron Devices 55, 48 (2008).CrossRefGoogle Scholar
Tsai, C.Y., Kuo, W.T., Lin, C.B., Chen, T.L., J. Micromech. Microeng. 18, 045001 (2008).CrossRefGoogle Scholar
Blick, R.H., Qin, H., Kim, H.-S., Marsland, R., New J. Phys. 9, 241 (2007).CrossRefGoogle Scholar
Biegalski, M., Dorr, K., Kim, D., Christen, H., Appl. Phys. Lett. 96, 151905 (2010).CrossRefGoogle Scholar
Pellegrino, L., Biasotti, M., Bellingeri, E., Bernini, C., Siri, A.S., Marre, D., Adv. Mater. 21, 2377 (2009).CrossRefGoogle Scholar
Wyant, J.C., Proc. SPIE 4737, 98 (2002).CrossRefGoogle Scholar
Zhang, R., Jiang, B., Cao, W., J. Appl. Phys. 90, 3471 (2001).CrossRefGoogle Scholar
Muralt, P., Ledermann, N., Baborowski, J., Barzegar, A., Gentil, S., Belgacem, B., Petitgrand, S., Bosseboeuf, A., Setter, N., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 2276 (2005).CrossRefGoogle Scholar
Watson, G.P., Aksyuk, V., Simon, M.E., Tennant, D.M., Cirelli, R.A., Mansfield, W.M., Pardo, F., Lopez, D.O., Bolle, C.A., Papazjan, A.R., Basacanhally, N., Lee, J., Fullowan, R., Klemens, F., Miner, J., Kornblit, A., Sorsch, T., Fetter, L., Peabody, M., Bower, J.E., Weiner, J.S., Low, Y.L., J. Vac. Sci. Technol., B 24 (2006).Google Scholar
Basavanhally, N., Lopez, D., Aksyuk, V., Ramsey, D., Bower, E., Cirelli, R., Ferry, E., Frahm, R., Gates, J., Klemens, F., Lai, W., Low, Y., Mansfield, W., Pai, C.S., Papazian, R., Pardo, F., Sorsch, T., Watson, P., IEEE Trans. Adv. Pack. 30, 622 (2007).CrossRefGoogle Scholar
Miao, H., Srinivasan, K., Aksyuk, V., New J. Phys. 14, 075015 (2012).CrossRefGoogle Scholar
Miao, H., Srinivasan, K., Rakher, M.T., Davanco, M., Aksyuk, V., Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS) 1535 (2011).Google Scholar
Pamplin, B.R., Crystal Growth (Pergamon Press, New York, 1980).Google Scholar