Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T09:24:15.868Z Has data issue: false hasContentIssue false

Genetically encoded “smart” peptide polymers for biomedicine

Published online by Cambridge University Press:  10 January 2014

Eric Mastria
Affiliation:
Duke University, Durham, NC; [email protected]
Ashutosh Chilkoti
Affiliation:
Department of Biomedical Engineering, Duke University, Durham, NC; [email protected]
Get access

Abstract

Drug delivery systems are becoming increasingly sophisticated, with the ability to target and penetrate specific tissues and release drugs based upon the local environment. While these advanced systems often offer advantages over their less sophisticated counterparts, the final product may be more complex and require additional manufacturing steps. In this article, we review a body of work based on genetically encoded elastin-like polypeptides (ELPs) that offer a route to modular, multifunctional delivery systems that are simple to manufacture. ELPs are temperature-sensitive biopolymers that can be designed on the genetic level and expressed in cell-based protein production systems. The tools of molecular biology and versatility of proteins are used to engineer polymers with precise composition and molecular weight that self-assemble to form drug delivery systems with an impressive variety of features and functions. Due to their versatility and ease of production, ELPs are likely to contribute to the goal of designing simple and effective “smart” delivery systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wagner, V., Dullaart, A., Bock, A.-K., Zweck, A., Nat. Biotechnol. 24, 1211 (2006).Google Scholar
Davis, M., Chen, Z., Shin, D., Nat. Rev. Drug Discov. 7, 771 (2008).Google Scholar
Lammers, T., Hennink, W., Storm, G., Br. J. Cancer 99, 392 (2008).Google Scholar
Allen, T., Cullis, P., Science 303, 1818 (2004).Google Scholar
Koo, O., Rubinstein, I., Onyuksel, H., Nanomed. Nanotechnol. Biol. Med. 1, 193 (2005).Google Scholar
Gregoriadis, G., Ann. N.Y. Acad. Sci. 308, 343 (1978).Google Scholar
Rahman, A., Kessler, A., More, N., Sikic, B., Rowden, G., Woolley, P., Schein, P., Cancer Res. 40, 1532 (1980).Google Scholar
Gabizon, A., Goren, D., Fuks, Z., Meshorer, A., Barenholz, Y., Br. J. Cancer 51, 681 (1985).CrossRefGoogle Scholar
Willis, M., Forssen, E., Adv. Drug Deliv. Rev. 29, 249 (1998).Google Scholar
Lian, T., Ho, R., J. Pharm. Sci. 90, 667 (2001).Google Scholar
Needham, D., Anyarambhatla, G., Kong, G., Dewhirst, M., Cancer Res. 60, 1197 (2000).Google Scholar
Ponce, A., Vujaskovic, Z., Yuan, F., Needham, D., Dewhirst, M., Int. J. Hyperthermia 22, 205 (2006).Google Scholar
Karanth, H., Murthy, R., J. Pharm. Pharmacol. 59, 469 (2007).Google Scholar
Chilkoti, A., Dreher, M., Meyer, D., Adv. Drug Deliv. Rev. 54, 1093 (2002).CrossRefGoogle Scholar
Bin, T., Tao, X., Ren, T., Weng, Y., Lin, X., Zhang, Y., Tang, X., J. Mater. Chem. 22, 17404 (2012).Google Scholar
Chow, D., Nunalee, M., Lim, D., Simnick, A., Chilkoti, A., Mater. Sci. Eng., R 62, 125 (2008).Google Scholar
MacKay, J., Chen, M., McDaniel, J., Liu, W., Simnick, A., Chilkoti, A., Nat. Mater. 8, 993 (2009).Google Scholar
Kim, B., Chilkoti, A., J. Am. Chem. Soc. 130, 17867 (2008).CrossRefGoogle Scholar
Dreher, M., Liu, W., Michelich, C., Dewhirst, M., Chilkoti, A., Cancer Res. 67, 4418 (2007).Google Scholar
MacEwan, S., Chilkoti, A., Biopolymers 94, 60 (2010).Google Scholar
Urry, D., Luan, C., Parker, T., Gowda, D., Prasad, K., Reid, M., Safavy, A., J. Am. Chem. Soc. 113, 4346 (1991).Google Scholar
Zhang, Y., Cremer, P., Curr. Opin. Chem. Biol. 10, 658 (2006).CrossRefGoogle Scholar
McDaniel, J., Radford, D., Chilkoti, A., Biomacromolecules 14, 2866 (2013).Google Scholar
Liu, W., Dreher, M., Furgeson, D., Peixoto, K., Yuan, H., Zalutsky, M., Chilkoti, A., J. Control. Release 116, 170 (2006).Google Scholar
MacEwan, S., Callahan, D., Chilkoti, A., Nanomedicine 5, 793 (2010).Google Scholar
Dreher, M., Simnick, A.J., Fischer, K., Smith, R.J., Patel, A., Schmidt, M., Chilkoti, A., J. Am. Chem. Soc. 130, 687 (2008).Google Scholar
Macewan, S., Chilkoti, A., Nano Lett. 12, 3322 (2012).Google Scholar
Wust, P., Hildebrandt, B., Sreenivasa, G., Rau, B., Gellermann, J., Riess, H., Felix, R., Schlag, P.M., Lancet Oncol. 8, 487 (2002).CrossRefGoogle Scholar
Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R., Langer, R., Nat. Nanotechnol. 2, 751 (2007).Google Scholar
Duncan, R., Nat. Rev. Drug Discov. 2, 347 (2003).Google Scholar
Sallach, R., Conticello, V., Chaikof, E., Biotechnol. Progr. 25, 1810 (2009).Google Scholar
Meyer, D., Chilkoti, A., Nat. Biotechnol. 17, 1112 (1999).Google Scholar
Webster, R., Didier, E., Harris, P., Siegel, N., Stadler, J., Tilbury, L., Smith, D., Drug Metab. Dispos. 35, 9 (2007).Google Scholar
Seymour, L., Miyamoto, Y., Maeda, H., Brereton, M., Strohalm, J., Ulbrich, K., Duncan, R., Eur. J. Cancer 31, 766 (1995).Google Scholar
Seymour, L., Duncan, R., Strohalm, J., Kopecek, J., J. Biomed. Mater. Res. 21, 1341 (1987).Google Scholar
Choi, H., Liu, W., Misra, P., Tanaka, E., Zimmer, J., Itty Ipe, B., Bawendi, M., Frangioni, J., Nat. Biotechnol. 25, 1165 (2007).Google Scholar
Yuan, F., Dellian, M., Fukumura, D., Leunig, M., Berk, D.A., Torchilin, V.P., Jain, R.K., Cancer Res. 55, 3752 (1995).Google Scholar
McDaniel, J., Bhattacharyya, J., Vargo, K., Hassouneh, W., Hammer, D., Chilkoti, A., Angew. Chem. Int. Ed. 52, 1683 (2013).Google Scholar
Bao, L., Haque, A., Jackson, K., Hazari, S., Moroz, K., Jetly, R., Dash, S., Am. J. Pathol. 178, 838 (2011).Google Scholar
Straube, W., Klein, E., Moros, E., Low, D., Myerson, R., Int. J. Hyperthermia 17, 48 (2001).Google Scholar
McDaniel, J., Macewan, S., Dewhirst, M., Chilkoti, A., J. Control. Release 159, 362 (2012).Google Scholar
Simnick, A., Amiram, M., Liu, W., Hanna, G., Dewhirst, M., Kontos, C., Chilkoti, A., J. Control. Release 155, 144 (2011).Google Scholar
Bhagwat, S., Lahdenranta, J., Giordano, R., Arap, W., Pasqualini, R., Shapiro, L., Blood 97, 652 (2001).Google Scholar
Pasqualini, R., Koivunen, E., Kain, R., Lahdenranta, J., Sakamoto, M., Stryhn, A., Ashmun, R., Shapiro, L., Arap, W., Ruoslahti, E., Cancer Res. 60, 722 (2000).Google Scholar
Simnick, A., Valencia, C., Liu, R., Chilkoti, A., ACS Nano 4, 2217 (2010).Google Scholar
Mammen, M., Choi, S.-K., Whitesides, G., Angew. Chem. Int. Ed. 37, 2755 (1998).Google Scholar
Mizejewski, G., Proc. Soc. Exp. Biol. Med. 222, 124 (1999).Google Scholar
Chen, X., Plasencia, C., Hou, Y., Neamati, N., J. Med. Chem. 48, 1098 (2005).Google Scholar
Arap, W., Pasqualini, R., Ruoslahti, E., Science 279, 377 (1998).Google Scholar
Wender, P., Mitchell, D., Pattabiraman, K., Pelkey, E., Steinman, L., Rothbard, J., Proc. Natl. Acad. Sci. U.S.A. 97, 13003 (2000).Google Scholar
Na, K., Bae, Y., Pharm. Res. 19, 681 (2002).Google Scholar
Lee, E., Na, K., Bae, Y., J. Control. Release 91, 103 (2003).Google Scholar
Callahan, D., Liu, W., Li, X., Dreher, M., Hassouneh, W., Kim, M., Marszalek, P., Chilkoti, A., Nano Lett. 12, 2165 (2012).Google Scholar