Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-01T02:58:44.975Z Has data issue: false hasContentIssue false

Fulfilling Feynman’s dream: “Make the electron microscope 100 times better”—Are we there yet?

Published online by Cambridge University Press:  13 January 2015

Stephen J. Pennycook*
Affiliation:
Departments of Materials Science and Engineering, National University of Singapore and the University of Tennessee, USA; [email protected]
Get access

Abstract

In his famous 1959 lecture “There’s plenty of room at the bottom,” Richard Feynman put out this challenge: “Is there no way to make the electron microscope more powerful?” He called for “improving the electron microscope by a hundred times,” which, given that the resolution then was about 10 Å, meant he was calling for a resolution in the range of 0.1 Å. Today’s aberration-corrected microscopes have come a long way, achieving a resolution of around 0.5 Å. This has enormously improved our ability to see atomic arrangements in crystals, measure ferroelectric displacements, and even determine valence and spin states with electron energy-loss spectroscopy. However, there remain many structures crucial to materials properties that we cannot yet see. Continuing the road toward Feynman’s goal would bring these structures to light, with yet more dramatic impacts on the entire field of materials science.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Feynman, R.P., J. Microelectromech. Syst. 1, 60 (1992).Google Scholar
Scherzer, O., Optik 2, 114 (1947).Google Scholar
Scherzer, O., Z. Phys. A: Hadrons Nucl. 101, 593 (1936).Google Scholar
Archard, G.D., Br. J. Appl. Phys. 5, 294 (1954).Google Scholar
Beck, V.D., Optik 53, 241 (1979).Google Scholar
Crewe, A.V., Kopf, D., Optik 55, 1 (1980).Google Scholar
Rose, H., Nucl. Instrum. Methods Phys. Res. 187, 187 (1981).Google Scholar
Krivanek, O.L., Dellby, N., Lupini, A.R., Ultramicroscopy 78, 1 (1999).Google Scholar
Zach, J., Haider, M., Nucl. Instrum. Methods Phys. Res., A 363, 316 (1995).Google Scholar
Uhlemann, S., Haider, M., Ultramicroscopy 72, 109 (1998).Google Scholar
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B., Urban, K., Nature 392, 768 (1998).CrossRefGoogle Scholar
Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B., Urban, K., Ultramicroscopy 75, 53 (1998).CrossRefGoogle Scholar
Haider, M., Rose, H., Uhlemann, S., Kabius, B., Urban, K., J. Electron Microsc. 47, 395 (1998).Google Scholar
Dellby, N., Krivanek, O.L., Nellist, P.D., Batson, P.E., Lupini, A.R., Microscopy 50, 177 (2001).Google Scholar
Batson, P.E., Dellby, N., Krivanek, O.L., Nature 418, 617 (2002).Google Scholar
Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A., Sides, W.H., Pennycook, S.J., Science 305, 1741 (2004).CrossRefGoogle Scholar
Erni, R., Rossell, M.D., Kisielowski, C., Dahmen, U., Phys. Rev. Lett. 102, 96101 (2009).CrossRefGoogle Scholar
Sawada, H., Tanishiro, Y., Ohashi, N., Tomita, T., Hosokawa, F., Kaneyama, T., Kondo, Y., Takayanagi, K., J. Electron Microsc. 58, 357 (2009).Google Scholar
Pennycook, S.J., Boatner, L.A., Nature 336, 565 (1988).Google Scholar
Pennycook, S.J., Jesson, D.E., Phys. Rev. Lett. 64, 938 (1990).Google Scholar
Pennycook, S.J., Jesson, D.E., Ultramicroscopy 37, 14 (1991).Google Scholar
Rayleigh, Lord, Philos. Mag. 42, 167 (1896).CrossRefGoogle Scholar
Pennycook, S.J., MRS Bull. 37, 943 (2012).Google Scholar
Pennycook, S.J., Colliex, C., MRS Bull. 37, 13 (2012).CrossRefGoogle Scholar
von Ardenne, M., Z. Phys. 109, 553 (1938).Google Scholar
Crewe, A.V., J. Appl. Phys. 36, 2605 (1965).Google Scholar
Crewe, A.V., Wall, J., Langmore, J., Science 168, 1338 (1970).Google Scholar
Lee, J., Zhou, W., Pennycook, S.J., Idrobo, J.-C., Pantelides, S.T., Nat. Commun. 4, 1650 (2013).Google Scholar
Zhou, W., Kapetanakis, M.D., Prange, M.P., Pantelides, S.T., Pennycook, S.J., Idrobo, J.-C., Phys. Rev. Lett. 109, 206803 (2012).Google Scholar
Pennycook, S.J., Kalinin, S.V., Nature, 515, 587 (2014).CrossRefGoogle Scholar
Jia, C.L., Urban, K.W., Alexe, M., Hesse, D., Vrejoiu, I., Science 331, 1420 (2011).Google Scholar
Jia, C., Mi, S., Urban, K., Vrejoiu, I., Alexe, M., Hesse, D., Nat. Mater. 7, 57 (2008).Google Scholar
Jia, C.L., Mi, S.B., Faley, M., Poppe, U., Schubert, J., Urban, K., Phys. Rev. B: Condens. Matter 79, 081405 (2009).Google Scholar
Jia, C., Nagarajan, V., He, J., Houben, L., Zhao, T., Ramesh, R., Urban, K., Waser, R., Nat. Mater. 6, 64 (2007).Google Scholar
Urban, K.W., MRS Bull. 32, 946 (2007).Google Scholar
Urban, K., Science 321, 506 (2008).Google Scholar
Borisevich, A., Ovchinnikov, O.S., Chang, H.J., Oxley, M.P., Yu, P., Seidel, J., Eliseev, E.A., Morozovska, A.N., Ramesh, R., Pennycook, S.J., Kalinin, S.V., ACS Nano 4, 6071 (2010).Google Scholar
Borisevich, A.Y., Chang, H.J., Huijben, M., Oxley, M.P., Okamoto, S., Niranjan, M.K., Burton, J.D., Tsymbal, E.Y., Chu, Y.H., Yu, P., Ramesh, R., Kalinin, S.V., Pennycook, S.J., Phys. Rev. Lett. 105, 087204 (2010).Google Scholar
Kim, Y.-M., Kumar, A., Hatt, A., Morozovska, A.N., Tselev, A., Biegalski, M.D., Ivanov, I., Eliseev, E.A., Pennycook, S.J., Rondinelli, J.M., Kalinin, S.V., Borisevich, A.Y., Adv. Mater. 25, 2497 (2013).Google Scholar
Cantoni, C., Gazquez, J., Miletto Granozio, F., Oxley, M.P., Varela, M., Lupini, A.R., Pennycook, S.J., Aruta, C., di Uccio, U.S., Perna, P., Maccariello, D., Adv. Mater. 24, 3952 (2012).CrossRefGoogle Scholar
Peng, Y., Oxley, M.P., Lupini, A.R., Chisholm, M.F., Pennycook, S.J., Microsc. Anal. 14, 36 (2008).Google Scholar
Abe, E., Pennycook, S.J., Tsai, A.P., Nature 421, 347 (2003).Google Scholar
Pennycook, T.J., McBride, J.R., Rosenthal, S.J., Pennycook, S.J., Pantelides, S.T., Nano Lett. 12, 3038 (2012).CrossRefGoogle Scholar
Li, C., Poplawsky, J., Wu, Y., Lupini, A.R., Mouti, A., Leonard, D.N., Paudel, N., Jones, K., Yin, W., Al-Jassim, M., Yan, Y., Pennycook, S.J., Ultramicroscopy 134, 113 (2013).Google Scholar
van Benthem, K., Lupini, A.R., Kim, M., Baik, H.S., Doh, S., Lee, J.-H., Oxley, M.P., Findlay, S.D., Allen, L.J., Luck, J.T., Pennycook, S.J., Appl. Phys. Lett. 87, 034104 (2005).Google Scholar
van Benthem, K., Lupini, A.R., Oxley, M.P., Findlay, S.D., Allen, L.J., Pennycook, S.J., Ultramicroscopy 106, 1062 (2006).Google Scholar
Borisevich, A.Y., Lupini, A.R., Pennycook, S.J., Proc. Natl. Acad. Sci. U.S.A. 103, 3044 (2006).Google Scholar
Borisevich, A.Y., Lupini, A.R., Travaglini, S., Pennycook, S.J., Microscopy 55, 7 (2006).Google Scholar
Nellist, P.D., Behan, G., Kirkland, A.I., Hetherington, C.J.D., Appl. Phys. Lett. 89, 124105 (2006).Google Scholar
Behan, G., Cosgriff, E.C., Kirkland, A.I., Nellist, P.D., Philos. Trans. R. Soc. Lon. A 367, 3825 (2009).Google Scholar
LeBeau, J.M., Findlay, S.D., Allen, L.J., Stemmer, S., Phys. Rev. Lett. 100, 206101 (2008).CrossRefGoogle Scholar
Lebeau, J.M., D’alfonso, A., Findlay, S.D., Stemmer, S., Allen, L., Phys. Rev. B: Condens. Matter 80, 174106 (2009).Google Scholar
LeBeau, J.M., Findlay, S.D., Allen, L.J., Stemmer, S., Nano Lett. 10, 4405 (2010).Google Scholar
Ishikawa, R., Lupini, A.R., Findlay, S.D., Taniguchi, T., Pennycook, S.J., Nano Lett. 14, 1903 (2014).Google Scholar
De Backer, A., Martinez, G.T., Rosenauer, A., Van Aert, S., Ultramicroscopy 134, 23 (2013).Google Scholar
Van Aert, S., De Backer, A., Martinez, G., Goris, B., Bals, S., Van Tendeloo, G., Rosenauer, A., Phys. Rev. B: Condens. Matter 87, 064107 (2013).Google Scholar
Van Aert, S., Batenburg, K.J., Rossell, M.D., Erni, R., Van Tendeloo, G., Nature 470, 374 (2012).CrossRefGoogle Scholar
Bals, S., Casavola, M., Van Huis, M.A., Van Aert, S., Batenburg, K.J., Van Tendeloo, G., Vanmaekelbergh, D., Nano Lett. 11, 3420 (2011).Google Scholar
Bals, S., Goris, B., Altantzis, T., Heidari, H., Van Aert, S., Van Tendeloo, G., C.R. Phys. 15, 140 (2014).Google Scholar
Goris, B., De Backer, A., Van Aert, S., Gómez-Graña, S., Liz-Marzan, L.M., Van Tendeloo, G., Bals, S., Nano Lett. 13, 4236 (2013).Google Scholar
Hwang, J., Zhang, J., D’Alfonso, A., Allen, L., Stemmer, S., Phys. Rev. Lett. 111, 266101 (2013).Google Scholar
Nellist, P.D., Pennycook, S.J., Science 274, 413 (1996).Google Scholar
Sohlberg, K., Rashkeev, S., Borisevich, A.Y., Pennycook, S.J., Pantelides, S.T., ChemPhysChem 5, 1893 (2004).Google Scholar
Lee, J., Yang, Z., Zhou, W., Pennycook, S.J., Pantelides, S.T., Chisholm, M.F., Proc. Natl. Acad. Sci. U.S.A. 111, 7522 (2014).Google Scholar
He, J., Borisevich, A., Kalinin, S.V., Pennycook, S.J., Pantelides, S.T., Phys. Rev. Lett. 105, 227203 (2010).Google Scholar
Varela, M., Lupini, A.R., Benthem, K.V., Borisevich, A.Y., Chisholm, M.F., Shibata, N., Abe, E., Pennycook, S.J., Annu. Rev. Mater. Res. 35, 539 (2005).Google Scholar