Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T02:25:00.534Z Has data issue: false hasContentIssue false

From Opals to Optics: Colloidal Photonic Crystals

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

Over a decade ago, theorists predicted that photonic crystals active at visible and near-infrared wavelengths would possess a variety of exciting optical properties. Only in the last several years, however, have experimentalists begun to build materials that realize this potential in the laboratory. This lag between experiment and theory is primarily due to the to the challenges associated with fabricating these unique materials. As the term “crystal” suggests, these samples must consist of highly perfect ordered arrays of solids. However, unlike conventional crystals, which exhibit order on the angstrom length scale, photonic crystals must have order on the submicrometer length scale. In addition, many of the most valuable properties of photonic crystals are only realized when samples possess a “full” photonic bandgap. For such systems, large dielectric contrasts and particular crystal symmetries create a range of frequencies over which light cannot propagate. Realizing the nanoscopic architectures required to form such systems is a challenge for experimentalists. As a result, fabrication schemes that rely on lithographic techniques or spontaneous assembly have been a focus in the development of the field.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yablonovitch, E. and Gmitter, T.J., Phys. Rev. Lett. 63 (1989) p. 1950.CrossRefGoogle Scholar
2.Yablonovitch, E., J. Opt. Soc. Am. B 10 (1993) p.283.CrossRefGoogle Scholar
3.John, S., Phys Rev. Lett. 58 (1987) p.2486.CrossRefGoogle Scholar
4.Darragh, P.J., Gaskin, A.J., and Sander, J.V., Sci. Am. 234 (1976) p.84.CrossRefGoogle Scholar
5.van Blaaderen, A., MRS Bull. 23 (10) (1998) p.39.CrossRefGoogle Scholar
6.Dinsmore, A.D., Crocher, J.C., and Yodh, A.G., Curr. Opin. Colloid Interface Sci. 3 (1998) p.5.CrossRefGoogle Scholar
7.Pieranski, P., Contemp. Phys. 24 (1983) p.25.CrossRefGoogle Scholar
8.Gast, A.P. and Russel, W.B., Phys. Today (December 1998) p.24.CrossRefGoogle Scholar
9.Rundquist, P., Photinos, P., Jagannathan, S., and Asher, S.A., J. Chem. Phys. 91 (1989) p.4932.CrossRefGoogle Scholar
10.Monovoukas, Y., Fuller, G.G., and Gast, A.P., J. Chem. Phys. 93 (1990) p.8294.CrossRefGoogle Scholar
11.Mittleman, D., Bertone, J.F., Jiang, P., Hwang, K.S., and Colvin, V.L., J. Chem. Phys. 111 (1999) p. 345.CrossRefGoogle Scholar
12.Philipse, A.P., J. Mater. Sci. Lett. (1989) p.1371.Google Scholar
13.Mayoral, R., Requena, J., Moya, O.S., Lopez, C., Cintas, A., Miguez, H., Meseguer, F., Vazquez, L., Holgado, M., and Blanco, A., Adv. Mater. 9 (1997) p.257.Google Scholar
14.Holland, B.T., Blanford, C.F., Do, T., and Stein, A., Chem. Mater. 11 (1999) p.795.CrossRefGoogle Scholar
15.Clark, N.A. and Hurd, A.J., Nature 281 (1979) p.57.CrossRefGoogle Scholar
16.Amos, R.M., Rarity, J.G., Tapster, P.R., Shepherd, T.J., and Kitson, S.C., Phys. Rev. E 61 (2000) p.2929.Google Scholar
17.Vlasov, Y.A., Deutsch, M., and Norris, D.J., Appl. Phys. Lett. 76 (2000) p.1627.CrossRefGoogle Scholar
18.Vlasov, Y.A., Astratov, V.N., Karimov, O.Z., Kaplyanskii, A.A., Bogomolov, V.N., and Prokofiev, A.V., Phys. Rev. B 55 (1997) p.357.Google Scholar
19.Mei, D., Liu, H., Cheng, B., Li, S., Zhang, D., and Dong, P., Phys. Rev. B 58 (1998) p.35.CrossRefGoogle Scholar
20.Keville, K.M., Franses, E.I., and Caruthers, J.M., J. Colloid Interface Sci. 144 (1991) p.103.CrossRefGoogle Scholar
21.Stober, W., Fink, A., and Bohn, E., J. Colloid Interface Sci. 26 (1968) p.62.CrossRefGoogle Scholar
22.Park, S.H., Qin, D., and Xia, Y., Adv. Mater. 10 (1998) p.1028.3.0.CO;2-P>CrossRefGoogle Scholar
23.Trau, M., Saville, D.A., and Aksay, I.A., Science 272 (1996) p.706.Google Scholar
24.Holgado, M., Garcia-Santanmara, F., Blanco, A., Ibisate, M., Cintas, A., Miguez, H., Serna, C.J., Molpeceres, C., Requena, J., Mifsud, A., Meseguer, F., and Lopez, C., Langmuir 15 (1999) p.4701.Google Scholar
25.Dimitrov, A. and Nagayama, K., Langmuir 12 (1996) p.1303.CrossRefGoogle Scholar
26.Dimitrov, A.S., Miwa, T., and Nagayama, K., Langmuir 16 (2000) p.5257.Google Scholar
27.Jiang, P., Bertone, J.F., Hwang, K.S., and Colvin, V.L., Chem. Mater. 11 (1999) p.2132.Google Scholar
28.Woodcock, L.V., Nature 385 (1997) p.141.CrossRefGoogle Scholar
29.Miguez, H., Meseguer, F., Lopez, C., Mifsud, A., Moya, J.S., and Vazquez, L., Langmuir 13 (1997) p.6009.Google Scholar
30.Vos, W.L., Megens, M., Kats, C.M.V., and Boseche, P., Langmuir 13 (1997) p.6004.CrossRefGoogle Scholar
31.N.Verhaegh, A.M., Duijneveldt, J.S.V., Blaaderen, A. van, and Lekkerkerker, H., J. Chem. Phys. 102 (1995) p.1416.CrossRefGoogle Scholar
32.Biswas, R., Sigalas, M.M., Subramania, G., and Ho, K.M., Phys. Rev. B 57 (1998) p.3701.Google Scholar
33.Busch, K. and John, S., Phys. Rev. E 58 (1998) p.3896.Google Scholar
34.Blanco, A., Chomski, E., Grabtchak, S., Ibisatge, M., John, S., Leonard, S.W., Lopez, C., Mesegeur, F., Miguez, H., Mondia, J.P., Ozin, G.A., Toader, O., and van, H.M.Driel, Nature 405 (2000) p.437.Google Scholar
35.Jiang, P., Hwang, K.S., Mittleman, D.M., Bertone, J.F., and Colvin, V.L., J. Am. Chem. Soc. 121 (1999) p.11630.CrossRefGoogle Scholar
36.Park, S.H. and Xia, Y., Chem. Mater. 10 (1998) p.1745.Google Scholar
37.Deutsch, M., Vlasov, Y.A., and Norris, D.J., Adv. Mater. 12 (2000) p.1176.3.0.CO;2-H>CrossRefGoogle Scholar
38.Holland, B.T., Blanford, C.E., and Stein, A., Science 281 (1998) p.538.Google Scholar
39.Wijnhoven, J.E.G. and Vos, W.L., Science 281 (1998) p.802.Google Scholar
40.Thijssen, M.S., Sprik, R., Wijnhoven, J.E.G.J., Megens, M., Narayanan, T., Lagendijk, A., and Vos, W.L., Phys. Rev. Lett. 83 (1999) p.2730.Google Scholar
41.Subramania, G., Constant, K., Biswas, R., Sigalas, M.M., and Ho, K.M., Lightwave, J.. Technol. 17 (1999) p.1970.Google Scholar
42.Turner, M.E., Jiang, P., Colvin, V.L., and Mittleman, D.M., Adv. Mater. 13 (3) (2001) p.180.Google Scholar
43.Romanov, S.G., Johnson, N.P., Fokin, A.V., Butko, V.Y., Yates, H.M., Pemble, M.E., and Torres, C.M.S., Appl. Phys. Lett. 70 (1997) p.2091.CrossRefGoogle Scholar
44.Yates, H.M., Pemble, M.E., Miguez, H., Blanco, A., Lopez, C., Meseguer, F., and Vazquez, L., J. Cryst. Growth 193 (1998) p.9.CrossRefGoogle Scholar
45.Zakhidov, A.A., Baughman, R.H., Iqbal, Z., Cui, C., Khayrullin, I., Dantas, S.O., Marti, J., and Ralchenko, V.G., Science 282 (1998) p.897.CrossRefGoogle Scholar
46.Vlasov, Y.A., Yao, N., and Norris, D.J., Adv. Mater. 11 (1999) p.165.3.0.CO;2-3>CrossRefGoogle Scholar
47.Braun, P.V. and Wiltzius, P., Nature 402 (1999) p.603.Google Scholar
48.Bloemer, M.J. and Scalora, M., Opt. Spectrosc. 87 (1999) p.545.Google Scholar
49.Bloemer, M.J. and Scalora, M., Appl. Phys. Lett. 72 (1998) p.1676.CrossRefGoogle Scholar
50.Zhang, W.Y., Lei, X.Y., Wang, Z.L., Zheng, D.G., Tam, W.Y., Chang, C.T., and Sheng, P., Phys. Rev. Lett. 84 (2000) p.2853.CrossRefGoogle Scholar
51.Chan, C.T., Zhang, W.Y., Wang, Z.L., Lei, X.Y., Zheng, D.G., Tam, W.Y., and Sheng, P., Physica B 279 (2000) p.150.Google Scholar
52.Velev, O.D., Tessier, P.M., Lenhoff, A.M., and Kaler, E.W., Nature 401 (1999) p.548.Google Scholar
53.Tessier, P.M., Velev, O.D., Kalambur, A.T., Rabolt, J.F., Lenhoff, A.M., and Kaler, E.W., J. Am. Chem. Soc. 122 (39) (2000) p.9554.Google Scholar
54.Yan, H., Blanford, C.F., Holland, B.T., Parent, M., Smyrl, W.H., and Stein, A., Adv. Mater. 11 (1999) p.1003.3.0.CO;2-K>CrossRefGoogle Scholar
55.Kulinowski, K.M., Jiang, P., Vaswani, H., and Colvin, V.L., Adv. Mater. 12 (2000) p.833.Google Scholar
56.Zhou, J., Zhou, Y., Ng, S.L., Zhang, H.X., Que, W.X., Lam, Y.L., Chan, Y.C., and Kam, C.H., Appl. Phys. Lett. 76 (2000) p.3337.CrossRefGoogle Scholar
57.Xu, L., Zhou, W.L., Frommen, C., Baughman, R.H., Zakhidov, A.A., Malkinski, L., Wang, J.Q., and Wiley, J.B., Chem. Commun. (2000) p.997.CrossRefGoogle Scholar
58.Bartlett, P.N., Birkin, P.R., and Ghanem, M.A., Chem. Commun. (2000) p.1671.Google Scholar
59.Li, Z.-Y., and Zhao-Qing, Z., Phys. Rev. B 62 (2000) p.1516.Google Scholar
60.Ho, K.M., Chan, C.T., and Soukoulis, C.M., Phys. Rev. Lett. 65 (1990) p.3152.CrossRefGoogle Scholar
61.Blaaderen, A. van, Ruel, R., and Wiltzius, P., Nature 385 (1997) p.321.Google Scholar
62.Lin, K.H., Crocker, J.C., Prasad, V., Schofield, A., Weitz, D.A., Lubensky, T.C., and Yodh, A.G., Phys. Rev. Lett. 85 (2000) p.1770.Google Scholar
63.Pusey, P.N. and Megen, W.V., Nature 320 (1986) p.340.CrossRefGoogle Scholar
64.Hunt, N., Jardine, R., and Bartlett, P.N., Phys. Rev. E 62 (2000) p.900.Google Scholar
65.Anderson, C.M. and Giapis, K.P., Phys. Rev. Lett. 77 (1996) p.2949.CrossRefGoogle Scholar
66.Zhong, Z., Yin, Y., Gates, B., and Xia, Y., Adv. Mater. 12 (2000) p.206.Google Scholar
67.Jiang, P., Bertone, J.F., and Colvin, V.L., Science 291 (2001) p.453.CrossRefGoogle Scholar
68.Rengajaran, R., Jiang, P., Colvin, V.L., and Mittleman, D.M., Appl. Phys. Lett. 77 (2000) p.3517.CrossRefGoogle Scholar
69.Yablonovitch, E., Gmitter, T.J., and Leung, K.M., Phys. Rev. Lett. 67 (1991) p.2295.Google Scholar
70.Haus, J.H., Sozuer, H.S., and Inguva, R., J. Mod. Opt. 39 (1992) p.1991.CrossRefGoogle Scholar
71.Pradhan, R.D., Tarhan, I.I., and Watson, G., Phys Rev. B 54 (1996) p.721.Google Scholar
72.Jiang, P., Ostojic, G.N., Narat, R., Rengajaran, R., Mittleman, D.M., and Colvin, V.L., Adv. Mater. 13 (6) (2001) p.389.3.0.CO;2-L>CrossRefGoogle Scholar
73.Bertone, J.F., Jiang, P.J., Hwang, K.S., Mittleman, D.M., and Colvin, V.L., Phys. Rev. Lett. 83 (1999) p.300.CrossRefGoogle Scholar