Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T08:37:19.941Z Has data issue: false hasContentIssue false

Freeform metasurface design based on topology optimization

Published online by Cambridge University Press:  11 March 2020

Jonathan A. Fan*
Affiliation:
Department of Electrical Engineering, Stanford University, USA; [email protected]
Get access

Abstract

Metasurfaces are thin-film electromagnetic devices with subwavelength-scale geometric structuring. They can be tailored to produce a broad range of optical functions due to the strong relationship between electromagnetic response and geometric shape. An open challenge has been understanding how to produce an ideal metasurface design when presented with a desired electromagnetic response. This article discusses the use of topology optimization as a design platform for high-performance, freeform metasurfaces. Two types of topology optimizers are covered—local gradient-based optimizers that leverage the adjoint variables method, and global population-based optimizers that reframe the optimization process as the training of a generative neural network. It is anticipated that these inverse design concepts will push metasurface performance to the physical limits of structured media and enable new functionalities in electromagnetic systems.

Type
Metasurfaces for Flat Optics
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yu, N., Capasso, F., Nat. Mater. 13, 139 (2014).CrossRefGoogle Scholar
Kildishev, A.V., Boltasseva, A., Shalaev, V.M., Science 339, 1232009 (2013).CrossRefGoogle Scholar
Khorasaninejad, M., Capasso, F., Science 358, eaam8100 (2017).CrossRefGoogle Scholar
Colburn, S., Zhan, A., Majumdar, A., Sci. Adv. 4, eaar2114 (2018).CrossRefGoogle Scholar
Paniagua-Domínguez, R., Yu, Y.F., Khaidarov, E., Choi, S., Leong, V., Bakker, R.M., Liang, X., Fu, Y.H., Valuckas, V., Krivitsky, L.A., Kuznetsov, A.I., Nano Lett . 18, 2124. (2018).CrossRefGoogle Scholar
Sawant, R., Bhumkar, P., Zhu, A.Y., Ni, P., Capasso, F., Genevet, P., Adv. Mater. 31, 1805555 (2019).CrossRefGoogle Scholar
Rubin, N.A., D’Aversa, G., Chevalier, P., Shi, Z., Chen, W.T., Capasso, F., Science 365, eaax1839 (2019).CrossRefGoogle Scholar
Silva, A., Monticone, F., Castaldi, G., Galdi, V., Alù, A., Engheta, N., Science 343, 160 (2014).CrossRefGoogle Scholar
Zheng, G., Mühlenbernd, H., Kenney, M., Li, G., Zentgraf, T., Zhang, S., Nat. Nanotechnol. 10, 308 (2015).CrossRefGoogle Scholar
Wang, K., Titchener, J.G., Kruk, S.S., Xu, L., Chung, H.-P., Parry, M., Kravchenko, I.I., Chen, Y.-H., Solntsev, A.S., Kivshar, Y.S., Neshev, D.N., Sukhorukov, A.A., Science 361, 1104 (2018).CrossRefGoogle Scholar
Lalanne, P., Astilean, S., Chavel, P., Cambril, E., Launois, H., Opt. Lett. 23, 1081 (1998).CrossRefGoogle Scholar
Lalanne, P., Astilean, S., Chavel, P., Cambril, E., Launois, H., J. Opt. Soc. Am. A 16, 1143 (1999).CrossRefGoogle Scholar
Arbabi, A., Horie, Y., Bagheri, M., Faraon, A., Nat. Nanotechnol. 10, 937 (2015).CrossRefGoogle Scholar
Yu, N.F., Genevet, P., Kats, M.A., Aieta, F., Tetienne, J.P., Capasso, F., Gaburro, Z., Science 334, 333 (2011).CrossRefGoogle Scholar
Decker, M., Staude, I., Falkner, M., Dominguez, J., Neshev, D.N., Brener, I., Pertsch, T., Kivshar, Y.S., Adv. Opt. Mater. 3, 813 (2015).CrossRefGoogle Scholar
Bonnecaze, R.T., Rodin, G.J., Sigmund, O., Jensen, J.S., Philos. Trans. Soc. Math. Phys. Eng. Sci. 361, 1001 (2003).Google Scholar
Borel, P.I., Harpøth, A., Frandsen, L.H., Kristensen, M., Shi, P., Jensen, J.S., Sigmund, O., Opt. Express 12, 1996 (2004).CrossRefGoogle Scholar
Abrams, D., Peng, D., Osher, S., US Patent 7,178,127 B2 (2007).Google Scholar
Burger, M., Osher, S.J., Yablonovitch, E., IEICE Trans. Electron. E87C, 258 (2004).Google Scholar
Molesky, S., Lin, Z., Piggott, A.Y., Jin, W., Vucković, J., Rodriguez, A.W., Nat. Photonics 12, 659 (2018).CrossRefGoogle Scholar
Miller, O.D., “Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design,” PhD dissertation, University of California, Berkeley (2012).Google Scholar
Jensen, J.S., Sigmund, O., Laser Photon. Rev. 5, 308 (2011).CrossRefGoogle Scholar
Yang, J., Fan, J.A., Opt. Lett. 42, 3161 (2017).CrossRefGoogle Scholar
Mansuripur, M., Tsai, D.P., Opt. Commun. 284, 707 (2011).CrossRefGoogle Scholar
Sell, D., Yang, J., Doshay, S., Yang, R., Fan, J.A., Nano Lett . 17, 3752 (2017).CrossRefGoogle Scholar
Wang, E.W., Sell, D., Phan, T., Fan, J.A., Opt. Mater. Express 9, 469 (2019).CrossRefGoogle Scholar
Wang, F., Jensen, J.S., Sigmund, O., J. Opt. Soc. Am. B 28, 387 (2011).CrossRefGoogle Scholar
Sell, D., Yang, J., Wang, E.W., Phan, T., Doshay, S., Fan, J.A., ACS Photonics 5, 2402 (2018).CrossRefGoogle Scholar
Sell, D., Yang, J., Doshay, S., Fan, J.A., Adv. Opt. Mater. 5, 1700645 (2017).CrossRefGoogle Scholar
Phan, T., Sell, D., Wang, E.W., Doshay, S., Edee, K., Yang, J., Fan, J.A., Light Sci. Appl. 8, 48 (2019).CrossRefGoogle Scholar
Sell, D., Yang, J., Doshay, S., Zhang, K., Fan, J.A., ACS Photonics 3, 1919 (2016).CrossRefGoogle Scholar
Lalanne, P., Hugonin, J.P., Chavel, P., J. Lightwave Technol. 24, 2442 (2006).CrossRefGoogle Scholar
Yang, J., Sell, D., Fan, J.A., Ann. Phys. 530, 1700302 (2017).CrossRefGoogle Scholar
Yang, J., Fan, J.A., Opt. Express 25, 23899 (2017).CrossRefGoogle Scholar
Jiang, J., Fan, J.A., arXiv:1906.07843 (2019).Google Scholar
Jiang, J., Fan, J.A., Nano Lett . 19, 5366 (2019).CrossRefGoogle Scholar
Campbell, S.D., Sell, D., Jenkins, R.P., Whiting, E.B., Fan, J.A., Werner, D.H., Opt. Mater. Express 9, 1842 (2019).CrossRefGoogle Scholar
Fan, J.A., Sell, D., Yang, J., USP Office, Ed. (The Board of Trustees of the Leland Stanford Junior University, United States, 2018), US Application No. 20180045953.Google Scholar
Lin, Z., Groever, B., Capasso, F., Rodriguez, A.W., Lončar, M., Phys. Rev. Appl. 9, 044030 (2018).CrossRefGoogle Scholar
Gansel, J.K., Thiel, M., Rill, M.S., Decker, M., Bade, K., Saile, V., von Freymann, G., Linden, S., Wegener, M., Science 325, 1513 (2009).CrossRefGoogle Scholar
Gabrielli, L.H., Liu, D., Johnson, S.G., Lipson, M., Nat. Commun. 3, 1217 (2012).CrossRefGoogle Scholar
Dhuey, S., Testini, A., Koshelev, A., Borys, N., Piper, J.R., Melli, M., Schuck, P.J., Peroz, C., Cabrini, S., J. Phys. Commun. 1, 015004 (2017).CrossRefGoogle Scholar
Peurifoy, J., Shen, Y., Jing, L., Yang, Y., Cano-Renteria, F., DeLacy, B.G., Joannopoulos, J.D., Tegmark, M., Soljačić, M., Sci. Adv. 4, eaar4206 (2018).CrossRefGoogle Scholar
Jiang, J., Sell, D., Hoyer, S., Hickey, J., Yang, J., Fan, J.A., ACS Nano (2019).Google Scholar
Liu, D., Tan, Y., Khoram, E., Yu, Z., ACS Photonics 5, 1365 (2018).CrossRefGoogle Scholar
Liu, Z., Zhu, D., Rodrigues, S.P., Lee, K.-T., Cai, W., Nano Lett . 18, 6570 (2018).CrossRefGoogle Scholar
So, S., Mun, J., Rho, J., ACS Appl. Mater. Int. 11 (27), 24264 (2019).CrossRefGoogle Scholar
Jiang, J., Lupoiu, R., Wang, E.W., Sell, D., Hugonin, J.P., Lalanne, P., Fan, J.A., airXiv:2002.03050 (2020).Google Scholar