Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T09:13:55.733Z Has data issue: false hasContentIssue false

Flash Memory Scaling

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

In order to meet technology scaling in the field of solid-state memory and data storage, the mainstream transistor-based flash technologies will start evolving to incorporate material and structural innovations. Dielectric scaling in nonvolatile memories is approaching the point where new approaches will be required to meet the scaling requirements while simultaneously meeting the reliability and performance requirements of future products. High-dielectric-constant materials are being explored as possible candidates to replace the traditional SiO2 and ONO (oxide/nitride/oxide) films used today in memory cells. Likewise, planar-based memory cell scaling is approaching the point where scaling constraints force exploration of new materials and nonplanar, three-dimensional scaling alternatives. This article will review the current status and discuss the approaches being explored to provide scaling solutions for future transistor floating-gate-based nonvolatile memory products. Based on the introduction of material innovations, it is expected that the planar transistor-based flash memory cells can scale through at least the end of the decade (2010) using techniques that are available today or projected to be available in the near future. More complex, structural innovations will be required to achieve further scaling.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Brown, W. and Brewer, J., Nonvolatile Semiconductor Memory Technology: A Comprehensive Guide to Understanding and Using NVSM Devices (IEEE Press, New York, 1998).Google Scholar
2Kynett, V.N., Baker, A., Fandrick, M.L., Hoekstra, G.P., Jungroth, O., Kreifels, J.A., Wells, S., and Winston, M.D., “An In-System Reprogrammable 256 K CMOS Flash Memory,” Tech. Dig. IEEE Int. Solid-State Circuits Conf. (1988) p. 132.Google Scholar
3Bauer, M., Alexis, R., Atwood, G., Baltar, B., Fazio, A., Frary, K., Hensel, M., Ishac, M., Javanifard, J., Landgraf, M., Leak, D., Loe, K., Mills, D., Ruby, P., Rozman, R., Sweha, S., Talreja, S., and Wojciechowski, K., “A Multilevel-Cell 32 Mb Flash Memory,” Tech. Dig. IEEE Int. Solid-State Circuits Conf. (1995) p. 132.Google Scholar
4Tam, S., Ko, P.K., and Hu, C., “Lucky Electron Model of Channel Hot Electron Injection in MOSFETs,” IEEE Trans. Electron. Dev. (September 1984).Google Scholar
5Lenzlinger, M. and Snow, E.H., J. Appl. Phys. 40 (1) (January 1967) p. 278.CrossRefGoogle Scholar
6Fazio, A., Keeney, S., and Lai, S., Intel Technol. J. (May 2002), accessible at developer.intel.com/technology/itj/2002/volume06issue02/ (accessed October 2004).Google Scholar
7She, M., King, T.-J., Hu, C., Zhu, W., Luo, Z., Han, J.-P., and Ma, T.-P., Proc. 2001 Int. Semicond. Dev. Res. Symp. (2001) p. 641.Google Scholar
8Pein, H.B. and Plummer, J.D., Tech. Dig. 1993 IEEE Int. Electron. Dev. Meet. (1993) p. 11.Google Scholar
9Lee, C.-H., Choi, K.-I., Cho, M.-K., Song, Y.-H., Park, K.-C., and Kim, K., “A Novel SONOS Structure of SiO2SiNAl2O3 with TaN Metal Gate for Multi-Gigabit Flash Memories,” Tech. Dig. 2003 IEEE Int. Electron. Dev. Meet. (2003).Google Scholar
10Eitan, B., Pavan, P., Bloom, I., Aloni, E., Frommer, A., and Finzi, D., Electron. Dev. Lett. 21 (11) (2000) p. 543.CrossRefGoogle Scholar
11Blauwe, J. De, “Nanocrystal Nonvolatile Memory Devices,” IEEE Trans. Nanotechnol. 1 (1) (March 2002) p. 72.CrossRefGoogle Scholar
12Naruke, K., Taguchi, S., and Wada, M., IEDM Tech. Dig. (1988) p. 424.Google Scholar
13Korotkov, A. and Likharev, K., IEDM Tech. Dig. (1999) p. 223.Google Scholar
14Likharev, K.K., IEEE Circuits Dev. Mag. 16 (4) (July 2000) p. 16.CrossRefGoogle Scholar