Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T03:55:45.209Z Has data issue: false hasContentIssue false

Excitonic processes in molecular crystalline materials

Published online by Cambridge University Press:  14 January 2013

Christopher J. Bardeen*
Affiliation:
Department of Chemistry, University of California, Riverside; [email protected]
Get access

Abstract

This article provides an overview of the basic aspects of the structure and dynamics of excitons in molecular crystals that give rise to their unique spectroscopic behavior. The two different types of optically accessible excitons, charge-transfer and Frenkel, are described and their different properties discussed. Particular attention is paid to the spin properties of Frenkel excitons (i.e., singlet and triplet) and also to their coupling to intramolecular vibrations. Experimental challenges in the study of molecular crystal optical properties are also reviewed, including their high optical density, complex refractive index behavior, and issues with sample crystallinity and chemical purity. Once created, excitons in molecular crystals can exhibit interesting dynamical behavior, including diffusion over large length scales and ionization into electron–hole pairs. Exciton–exciton interactions are also important, ranging from fusion or annihilation (two excitons combine into one exciton) to fission (one exciton splits into two excitons). The long-range diffusion and exciton fission effects have particular relevance for the design of organic photovoltaic materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Davydov, A.S., Theory of Molecular excitons (Plenum Press, New York, 1971).CrossRefGoogle Scholar
Philpott, M.R., Adv. Chem. Phys. 23, 227 (1973).CrossRefGoogle Scholar
Robinson, G.W., Ann. Rev. Phys. Chem. 21, 429 (1970).Google Scholar
Craig, D.P., Walmsley, S.H., Excitons in molecular crystals (W.A. Benjamin, New York, 1968).Google Scholar
Silinsh, E.A., Organic Molecular Crystals: Their Electronic States (Springer-Verlag, Heidelberg, 1980).Google Scholar
Agranovich, V.M., Galanin, M.D., Electronic excitation energy transfer in condensed matter (North-Holland, New York, 1982).Google Scholar
Scholes, G.D., Rumbles, G., Nature Mater. 5, 683 (2006).CrossRefGoogle Scholar
Murrell, J.N., Tanaka, J., Molec. Phys. 7, 363 (1964).CrossRefGoogle Scholar
Kasha, M., Rawls, H.R., El-Bayoumi, M.A., Pure Appl. Chem. 11, 371 (1965).Google Scholar
Bounds, P.J., Petelenz, P., Siebrand, W., Chem. Phys. 63, 303 (1981).CrossRefGoogle Scholar
Pope, M., Swenberg, C.E., Electronic processes in organic crystals and polymers (Oxford University Press, New York, 1999).CrossRefGoogle Scholar
Knox, R.S., Theory of excitons (Academic Press, New York, 1963).Google Scholar
Shen, Z., Forrest, S.R., Phys. Rev. B 55, 10578 (1997).Google Scholar
Wagersreiter, T., Mukamel, S., Chem. Phys. 210, 171 (1996).CrossRefGoogle Scholar
Beljonne, D., Cornil, J., Silbey, R., Millie, P., Brédas, J.L., J. Chem. Phys. 112, 4749 (2000).CrossRefGoogle Scholar
Clark, A.E., Qin, C., Li, A.D. Q., J. Am. Chem. Soc. 129, 7586 (2007).CrossRefGoogle Scholar
Spano, F.C., Ann. Rev. Phys. Chem. 57, 217 (2006).Google Scholar
Yamagata, H., Spano, F.C., J. Chem. Phys. 135, 054906/1 (2011).Google Scholar
Schuster, R., Knupfer, M., Berger, H., Phys. Rev. Lett. 98, 037402/1 (2007).CrossRefGoogle Scholar
Yamagata, H., Norton, J., Hontz, E., Olivier, Y., Beljonne, D., Brédas, J.L., Silbey, R.J., Spano, F.C., J. Chem. Phys. 134, 204703/1 (2011).CrossRefGoogle Scholar
Levine, I.N., Quantum Chemistry (Prentice-Hall, Upper Saddle River, NJ, 2000).Google Scholar
Yersin, H., Rausch, A.F., Czerwieniec, R., Hofbeck, T., Fischer, T., Coord. Chem. Rev. 255, 2622 (2011).CrossRefGoogle Scholar
Baldo, M.A., O’Brien, D.F., You, Y., Shoustikov, A., Sibley, S., Thompson, M.E., Forrest, S.R., Nature 305, 151 (1998).CrossRefGoogle Scholar
d. Boer, R.W.I., Gershenson, M.E., Morpurgo, A.F., Podzorov, V., Phys. Stat. Solid. A 201, 1302 (2004).Google Scholar
Tavazzi, S., Campione, M., Laicini, M., Raimondo, L., Borghesi, A., Spearman, P., J. Chem. Phys. 124, 194710/1 (2006).CrossRefGoogle Scholar
Philpott, M.R., Ann. Rev. Phys. Chem. 31, 97 (1980).Google Scholar
Baldo, M., Deutsch, M., Burrows, P., Gossenberger, H., Gerstenberg, M., Ban, V., Forrest, S., Adv. Mater. 10, 1505 (1998).3.0.CO;2-G>CrossRefGoogle Scholar
Nalwa, H.S., Kasai, H., Okada, S., Oikawa, H., Matsuda, H., Kakuta, A., Mukoh, A., Nakanishi, H., Adv. Mater. 5, 758 (1993).CrossRefGoogle Scholar
Kwon, E., Oikawa, H., Kasai, H., Nakanishi, H., Cryst. Growth Des. 7, 600 (2007).Google Scholar
Asahi, T., Sugiyama, T., Masuhara, H., Acc. Chem. Res. 41, 1790 (2008).CrossRefGoogle Scholar
Kostler, S., Rudorfer, A., Haase, A., Satzinger, V., Jakopic, G., Ribitsch, V., Adv. Mater. 21, 2505 (2009).Google Scholar
Hochstrasser, R.M., Rev. Mod. Phys. 34, 531 (1962).CrossRefGoogle Scholar
Lanzani, G., Frolov, S.V., Lane, P.A., Vardeny, Z.V., Nisoli, M., Silvestri, S.D., Phys. Rev. Lett. 79, 3066 (1997).CrossRefGoogle Scholar
Matsui, A., J. Opt. Soc. Am. B 7, 1615 (1990).Google Scholar
Yago, T., Tamaki, Y., Furube, A., Katoh, R., Phys. Chem. Chem. Phys. 10, 4435 (2008).CrossRefGoogle Scholar
Tanaka, J., Bull. Chem. Soc. Jap. 36, 1237 (1963).Google Scholar
Muccini, M., Schneider, M., Taliani, C., Sokolowski, M., Umbach, E., Beljonne, D., Cornil, J., Bredas, J. L., Phys. Rev. B 62, 6296 (2000).Google Scholar
Jelley, E.E., Nature 138, 1009 (1936).Google Scholar
Eisfeld, A., Briggs, J.S., Chem. Phys. 324, 376 (2006).Google Scholar
Dicke, R.H., Phys. Rev. 93, 99 (1954).Google Scholar
Stephen, M.J., J. Chem. Phys. 40, 669 (1964).Google Scholar
Spano, F.C., Mukamel, S., J. Chem. Phys. 91, 683 (1989).Google Scholar
Camposeo, A., Polo, M., Tavazzi, S., Silvestri, L., Spearman, P., Cingolani, R., Pisignano, D., Phys. Rev. B 81, 033306/1 (2010).Google Scholar
Lim, S.H., Bjorklund, T.G., Spano, F.C., Bardeen, C.J., Phys. Rev. Lett. 92, 107402/1 (2004).Google Scholar
Voigt, M., Langner, A., Schouwink, P., Lupton, J.M., Mahrt, R.F., Sokolowski, M., J. Chem. Phys. 127, 114705/1 (2007).CrossRefGoogle Scholar
Spano, F.C., Acc. Chem. Res. 43, 429 (2010).CrossRefGoogle Scholar
Ahn, T.S., Muller, A.M., Al-Kaysi, R.O., Spano, F.C., Norton, J.E., Beljonne, D., Brédas, J.L., Bardeen, C.J., J. Chem. Phys. 128, 054505/1 (2008).CrossRefGoogle Scholar
Meinardi, F., Cerminara, M., Sassella, A., Borghesi, A., Spearman, P., Bongiovanni, G., Mura, A., Tubino, R., Phys. Rev. Lett. 89, 157403/1 (2002).CrossRefGoogle Scholar
Sun, H., Zhao, Z., Spano, F.C., Beljonne, D., Cornil, J., Shuai, Z., Brédas, J.L., Adv. Mater. 15, 818 (2003).Google Scholar
Osterbacka, R., An, C.P., Jiang, X.M., Vardeny, Z.V., Science 287, 839 (2000).Google Scholar
Clark, J., Silva, C., Friend, R.H., Spano, F.C., Phys. Rev. Lett. 98, 206406/1 (2007).CrossRefGoogle Scholar
Brédas, J.L., Norton, J.E., Cornil, J., Coropceanu, V., Acc. Chem. Res. 42, 1691 (2009).Google Scholar
Gregg, B.A., J. Phys. Chem. B 107, 4688 (2003).CrossRefGoogle Scholar
Peumans, P., Uchida, S., Forrest, S.R., Nature 425, 158 (2003).Google Scholar
Lunt, R.R., Benziger, J.B., Forrest, S.R., Adv. Mater. 22, 1233 (2010).CrossRefGoogle Scholar
Jang, S., Newton, M.D., Silbey, R.J., Phys. Rev. Lett. 92, 218301/1 (2004).CrossRefGoogle Scholar
Emelianova, E.V., Athanasopoulos, S., Silbey, R.J., Beljonne, D., Phys. Rev. Lett. 104, 206405/1 (2010).Google Scholar
Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.K., Mancal, T., Cheng, Y.C., Blankenship, R.E., Fleming, G.R., Nature 446, 782 (2007).Google Scholar
Scholes, G.D., J. Phys. Chem. Lett. 1, 2 (2010).Google Scholar
Rose, T.S., Righini, R., Fayer, M.D., Chem. Phys. Lett. 106, 13 (1984).Google Scholar
Najafov, H., Lee, B., Zhou, Q., Feldman, L.C., Podzorov, V., Nat. Mater. 9, 938 (2010).Google Scholar
Powell, R.C., Soos, Z.G., J. Luminescence 11, 1 (1975).CrossRefGoogle Scholar
Adams, D.M., Kerimo, J., O’Connor, D.B., Barbara, P.F., J. Phys. Chem. A 103, 10138 (1999).Google Scholar
Muller, A.M., Bardeen, C.J., J. Phys. Chem. C 111, 12483 (2007).CrossRefGoogle Scholar
Irkhin, P., Biaggio, I., Phys. Rev. Lett. 107, 017402/1 (2011).CrossRefGoogle Scholar
Silinsh, E.A., Inokuchi, H., Chem. Phys. 149, 373 (1991).CrossRefGoogle Scholar
Petelenz, P., Mucha, D., J. Chem. Phys. 100, 4607 (1994).Google Scholar
Yi, Y., Coropceanu, V., Brédas, J.L., J. Am. Chem. Soc. 131, 15777 (2009).Google Scholar
Kleinerman, M., Azarraga, L., McGlynn, S.P., J. Chem. Phys. 37, 1825 (1962).Google Scholar
Hummer, K., Puschnig, P., Ambrosch-Draxl, C., Phys. Rev. Lett. 92, 147402/1 (2004).CrossRefGoogle Scholar
Sai, N., Taigo, M.L., Chelikowski, J.R., Reboredo, F.A., Phys. Rev. B 77, 161306/1 (2008).Google Scholar
Moses, D., Soci, C., Chi, X., Ramirez, A.P., Phys. Rev. Lett. 97, 067401/1 (2006).Google Scholar
Ostroverkhova, O., Cooke, D.G., Hegmann, F.A., Anthony, J.E., Podzorov, V., Gershenson, M.E., Jurchescu, O.D., Palstra, T.T.M., Appl. Phys. Lett. 88, 162101/1 (2006).Google Scholar
Thorsmolle, V.K., Averitt, R.D., Chi, X., Hilton, D.J., Smith, D.L., Ramirez, A.P., Taylor, A.J., Appl. Phys. Lett. 84, 891 (2004).CrossRefGoogle Scholar
Horowitz, G., Kouki, F., Valat, P., Delannoy, P., Roussel, J., Phys. Rev. B 59, 10651 (1999).Google Scholar
Najafov, H., Biaggio, I., Podzorov, V., Calhoun, M.F., Gershenson, M.E., Phys. Rev. Lett. 96, 056604/1 (2006).CrossRefGoogle Scholar
Kearns, D.R., J. Chem. Phys. 39, 2697 (1963).Google Scholar
Silver, M., Olness, D., Swicord, M., Jarnagin, R.C., Phys. Rev. Lett. 10, 12 (1963).Google Scholar
Gelinck, G.H., Piet, J.J., Wegewijs, B.R., Mullen, K., Wildeman, J., Hadziioannou, G., Warman, J.M., Phys. Rev. B 62, 1489 (2000).Google Scholar
Greene, B.I., Millard, R.R., Phys. Rev. Lett. 55, 1331 (1985).Google Scholar
Andrews, D.L., Bradshaw, D.S., J. Chem. Phys. 121, 2445 (2004).Google Scholar
Parker, C.A., Hatchard, C.G., Joyce, T.A., Nature 205, 1282 (1965).CrossRefGoogle Scholar
Ryansnyanskiy, A., Biaggio, I., Phys. Rev. B 84, 193203/1 (2011).CrossRefGoogle Scholar
Insangulov, R.R., Kozlov, D.V., Castellano, F.N., Chem. Commun. (30), 3776 (2005).Google Scholar
Baluschev, S., Miteva, T., Yakutkin, V., Nelles, G., Yasuda, A., Wegner, G., Phys. Rev. Lett. 97, 13903/1 (2006).Google Scholar
Smith, M.B., Michl, J., Chem. Rev. 110, 6891 (2010).Google Scholar
Singh, S., Jones, W.J., Siebrand, W., Stoicheff, B.P., Schneider, W.G., J. Chem. Phys. 42, 330 (1965).Google Scholar
Swenberg, C.E., Stacy, W.T., Chem. Phys. Lett. 2, 327 (1968).Google Scholar
Burdett, J.J., Gosztola, D., Bardeen, C.J., J. Chem. Phys. 135, 214508/1 (2011).Google Scholar
Burdett, J.J., Bardeen, C.J., J. Am. Chem. Soc. 134, 8597 (2012).CrossRefGoogle Scholar
Chan, W.L., Ligges, M., Zhu, X.Y., Nat. Chem. 4, 840 (2012).Google Scholar
Rao, A., Wilson, M.W.B., Hodgkiss, J.M., Albert-Seifried, S., Bassler, H., Friend, R.H., J. Am. Chem. Soc. 132, 12698 (2010).Google Scholar
Wilson, M.W.B., Rao, A., Clark, J., Kumar, R.S.S., Brida, D., Cerullo, G., Friend, R.H., J. Am. Chem. Soc. 133, 11830 (2011).Google Scholar
Chan, W.L., Ligges, M., Jailaubekov, A., Kaake, L., Miaja-Avila, L., Zhu, X.Y., Science 334, 1541 (2011).CrossRefGoogle Scholar
Johnson, J.C., Nozik, A.J., Michl, J., J. Am. Chem. Soc. 132, 16302 (2010).Google Scholar
Wang, C., Tauber, M.J., J. Am. Chem. Soc. 132, 13988 (2010).Google Scholar
Lanzani, G., Cerullo, G., Zavelani-Rossi, M., Silvestri, S.D., Phys. Rev. Lett. 87, 187402/1 (2001).Google Scholar
Paci, I., Johnson, J.C., Chen, X., Rana, G., Popovic, D., David, D.E., Nozik, A.J., Ratner, M.A., Michl, J., J. Am. Chem. Soc. 128, 16546 (2006).Google Scholar
Jadhav, P.J., Mohanty, A., Sussman, J., Lee, J., Baldo, M.A., Nano Lett. 11, 1495 (2011).Google Scholar
Ehrler, B., Wilson, M.W.B., Rao, A., Friend, R.H., Greenham, N.C., Nano Lett. 12, 1053 (2012).Google Scholar
Shockley, W., Queisser, H.J., J. Appl. Phys. 32, 510 (1961).Google Scholar
Hanna, M.C., Nozik, A.J., J. Appl. Phys. 100, 074510/1 (2006).Google Scholar
Shpaisman, H., Niitsoo, O., Lubomirsky, I., Cahen, D., Sol. Energy Mater. Sol. Cells 92, 1541 (2008).Google Scholar
Liu, S., Wang, W.M., Briseno, A.L., Mannsfeld, S.C.B., Bao, Z., Adv. Mater. 21, 1217 (2009).Google Scholar