Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T19:23:31.508Z Has data issue: false hasContentIssue false

Erbium-Doped Optical-Waveguide Amplifiers on Silicon

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Thin-film integrated optics is becoming more and more important in optical-communications technology. The fabrication of passive devices such as planar optical waveguides, splitters, and multiplexers is now quite well-developed. Devices based on this technology are now commercially available. One step to further improve this technology is to develop optical amplifiers that can be integrated with these devices. Such amplifiers can compensate for the losses in splitters or other optical components, and can also serve as pre-amplifiers for active devices such as detectors.

In optical-fiber technology, erbium-doped fiber amplifiers, are used in long-distance fiber-communications links. They use an optical transition in Er3+ at a wavelength of 1.54 μm for signal amplification, and their success has set a standard of optical communication at this wavelength. Using the same concept of Er doping, planar-waveguide amplifiers are now being developed. For these devices, silicon is often used as a substrate, so that optoelectronic integration with other devices in or on Si (electrical devices, or Si-based light sources, detectors, and modulators) may become possible. Figure 1 shows an example of a silicon-based optical integrated circuit5 in which a 1 × 4 splitter is combined with an amplifying section.

Type
Silicon-Based Optoelectronics
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Miniscalco, W.J., J. Lightwave Technol. 9 (1991) p. 234.CrossRefGoogle Scholar
2.Polman, A., J. Appl. Phys. 82 (1997) p. 1.CrossRefGoogle Scholar
3.Mears, P.J., Reekie, L., Jauncey, I.M., and Payne, D.N., Electron. Lett. 23 (1987) p. 1026.CrossRefGoogle Scholar
4.Desurvire, E., Erbium-Doped Fiber Amplifiers: Principles and Applications (John Wiley & Sons, New York, 1994).Google Scholar
5.van den Hoven, G.N., PhD dissertation, University of Utrecht, 1996.Google Scholar
6. For example, see Townsend, P.D., Optical Effects of Ion Implantation (Cambridge University Press, Cambridge, 1994).CrossRefGoogle Scholar
7.Ramaswamy, R.V. and Srivastava, R., J. Lightwave Technol. 6 (1988) p. 984.CrossRefGoogle Scholar
8.Hattori, K., Kitagawa, T., Oguma, M., Wada, M., Temmyo, J., and Horiguchi, M., Electron. Lett. 29 (1993) p. 357.CrossRefGoogle Scholar
9.Smit, M., PhD dissertation, Delft University of Technology, 1991.Google Scholar
10.van den Hoven, G.N., Koper, R.J.I.M., Polman, A., van Dam, C., van Uffelen, J.W.M., and Smit, M.K., Appl. Phys. Lett. 68 (1996) p. 1886.CrossRefGoogle Scholar
11.Arai, K., Namikawa, H., Kumata, K., Honda, T., Ishii, Y., and Handa, T., J. Appl. Phys. 59 (1986) p. 3430.CrossRefGoogle Scholar
12.van den Hoven, G.N., Snoeks, E., Polman, A., van Uffelen, J.W.M., Oei, Y.S., and Smit, M.K., Appl. Phys. Lett. 62 (1993) p. 3065.CrossRefGoogle Scholar
13.van den Hoven, G.N., Polman, A., Alves, E., da Silva, M.F., Melo, A.A., and Soares, J.C., J. Mater. Res. 12 (1997) p. 1401.CrossRefGoogle Scholar
14.Hoekstra, T., PhD dissertation, Twente University of Technology, 1994.Google Scholar
15.Hehlen, M.P., Cockroft, N.J., Gosnell, T.R., and Bruce, A.J., Phys. Rev. B 56 (1997) p. 9302.CrossRefGoogle Scholar
16.van den Hoven, G.N., Snoeks, E., Polman, A., van Dam, C., van Uffelen, J.W.M., and Smit, M.K., J. Appl. Phys. 79 (1996) p. 1258.CrossRefGoogle Scholar
17.Snoeks, E., van den Hoven, G.N., Polman, A., Hendriksen, B., Diemeer, M.B.J., and Priolo, F., J. Opt. Soc. Am. B 23 (1995) p. 1468.CrossRefGoogle Scholar
18.Kik, P.G., Polman, A., van Uffelen, J.W.M., and Smit, M.K. (unpublished data).Google Scholar
19.Auzel, F., in Radiationless Processes, edited by DiBartolo, B. (Plenum Press, New York, 1980).Google Scholar
20.Snoeks, E., Kik, P.G., and Polman, A., Opt. Mater. 5 (1996) p. 159.CrossRefGoogle Scholar
21.Yan, Y., Faber, A.J., and de Waal, H., J. Non-Cryst. Solids 181 (1995) p. 283.CrossRefGoogle Scholar
22.van den Hoven, G.N., van der Elsken, J.A., Polman, A., van Dam, C., van Uffelen, J.W.M., and Smit, M.K., Appl. Opt. 36 (1997) p. 3338.CrossRefGoogle Scholar
23.Hattori, K., Kitagawa, T., Oguma, M., Ohmori, Y., and Horiguchi, M., Electron. Lett. 30 (1994) p. 856.CrossRefGoogle Scholar
24.Ghosh, R.N., Shumulovich, J., Kane, C.F., de Barros, M.R.X., Nykolak, G., Bruce, A.J., and Becker, P.C., IEEE Photonics Technol. Lett. 8 (1996) p. 518.CrossRefGoogle Scholar
25.Shumulovich, J., Wong, A., Wong, Y.H., Becker, P.C., Bruce, A.J., and Adar, R., Electron. Lett. 28 (1992) p. 1181.CrossRefGoogle Scholar
26.Barbier, D., Delavaux, J-M., Kevorkian, A., Gastaldo, P., and Jouanno, J.M., in Proc. OFC ′95 (San Diego, 1995).Google Scholar
27.Delavaux, J-M.P., Granlund, S., Mizuhara, O., Tzeng, L.D., Barbier, D., Rattay, M., Andre, F. Saint, and Kevorkian, A., IEEE Photonics Technol. Lett. 9 (1997) p. 247.CrossRefGoogle Scholar
28.van Weerden, H.J., Hoekstra, T.H., Lambeck, P.V., and Popma, Th.J.A., in Proc. 8th European Conf. Integrated Optics (Stockholm, 1997) p. 169.Google Scholar
29.Yan, Y.C., Faber, A.J., de Waal, H., Polman, A., and Kik, P.G., Appl. Phys. Lett. 71 (1997) p. 2922.CrossRefGoogle Scholar
30.Slooff, L.H., Polman, A., Wolbers, M.P. Oude, van Veggel, F.C.J.M., Reinhoudt, D.N., and Hofstraat, J.W., J. Appl. Phys. 83 (1998) p. 497.CrossRefGoogle Scholar
31.Wolbers, M.P. Oude, PhD dissertation, University of Twente, 1997.Google Scholar
32.Slooff, L.H., Polman, A., Wolbers, M.C. Oude, van Veggel, F.C.J.M., Reinhoudt, D.N., and Hofstraat, J.W. (unpublished data).Google Scholar
33.Polman, A., van den Hoven, G.N., Custer, J.S., Shin, J.H., Serna, R., and P.Alkemade, P.F.A., J. Appl. Phys. 77 (1995) p. 1256.CrossRefGoogle Scholar
34.Franzò, G., Coffa, S., Priolo, F., and Spinella, C., J. Appl. Phys. 81 (1997) p. 2784.CrossRefGoogle Scholar
35.Zheng, B., Michel, J., Ren, F.Y.G., Kimerling, L.C., Jacobson, D.C., and Poate, J.M., Appl. Phys. Lett. 64 (1994) p. 2842.CrossRefGoogle Scholar
36.Coffa, S., Franzò, G., and Priolo, F., Appl. Phys. Lett. 69 (1996) p. 2077.CrossRefGoogle Scholar
37.Palm, J., Gan, F., Zheng, B., Michel, J., and Kimerling, L.C., Phys. Rev. B 54 (1996) p. 17603.CrossRefGoogle Scholar
38.Serna, R., Shin, Jung H., Lohmeier, M., Vlieg, E., Polman, A., and Alkemade, P.F.A., J. Appl. Phys. 79 (1996) p. 2658.CrossRefGoogle Scholar
39.Reittinger, A., Stimmer, J., and Abstreiter, G., Appl. Phys. Lett. 70 (1997) p. 2431.CrossRefGoogle Scholar
40.Agarwal, A.M., Liao, L., Foresi, J.S., Black, M.R., Duan, X., and Kimerling, L.C., J. Appl. Phys. 80 (1996) p. 6120.CrossRefGoogle Scholar