Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T02:30:31.750Z Has data issue: false hasContentIssue false

Environmental Stability of High Tc Superconducting Ceramics

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The discovery of high Tc superconductivity in layered cuprate ceramics has so far led to the identification of about 35 distinct superconducting cuprate systems, the latest of which is the 133 K superconducting system Hg-Ba-Ca-Cu-O. For most of their proposed applications, high Tc ceramics have to be resistant to environmental degradation both with respect to atmospheric water vapor, e.g., in storage, and to liquid water (produced by condensation on warm-up from cryogenic conditions). The presence of CO2 is an important factor in both environments. Increasing environmental stability involves improving the processing methods to eliminate pores, cracks, and other macroscopic defects (e.g., highly leachable impurity phases) which are prevalent in materials prepared by solid-state sintering. Furthermore, protective coatings and hermetic seals are necessary in many applications involving films because of small film thickness. (Wires are usually drawn inside metal tubes, which provide protection.)

Type
Environmental Stability of Materials
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bednorz, J.G. and Müller, A.K., Z. Phys. B 64 (1986) p. 189.CrossRefGoogle Scholar
2.Cava, R.J., Nature 362 (1993) p. 204.CrossRefGoogle Scholar
3.Putilin, S.N., Antipov, E.V., Chmaissem, O., and Marezio, M., Nature 362 (1993) p. 226; A. Schilling, M. Cantoni, J.D. Guo, and H.R. Ott, Nature 363 (1993) p. 56.CrossRefGoogle Scholar
4.Yan, M.F., Barns, R.L., O'Bryan, H.M. Jr., Gallagher, P.K., Sherwood, R.C., and Jin, S., Appl. Phys. Lett. 51 (1987) p. 532.CrossRefGoogle Scholar
5.Rosamilia, J.M., Miller, B., Schneemeyer, L.F., Wasczak, J.W., and O'Bryan, H.M. Jr., J. Electrochem. Soc. 134 (1988) p. 1863.CrossRefGoogle Scholar
6.Thompson, J.G., Hyde, B.G., Withers, R.L., Anderson, J.S., FitzGerald, J.D., Bitmead, J., Paterson, M.S., and Stewart, A.M., Mater. Res. Bull. 22 (1987) p. 1715.CrossRefGoogle Scholar
7.Barns, R.L. and Laudise, R.A., Appl. Phys. Lett. 51 (1987) p. 1373.CrossRefGoogle Scholar
8.Bansal, N.P. and Sandkuhl, A.L., Appl. Phys. Lett. 52 (1987) p. 323.CrossRefGoogle Scholar
9.Kitazawa, K., Kishio, K., Hasegawa, T., Ohtomo, A., Yaegashi, S., Kanbe, S., Park, K., Kuwahara, K., and Fueki, K., in High-Temperature Superconductors, edited by Brodsky, M.B., Dynes, R.C., Kitazawa, K., and Tuller, H.L. (Mater. Res. Symp. Proc. 99, Pittsburgh, PA, 1987) p. 33.Google Scholar
10.Garland, M.M., J. Mater. Res. 3 (1988) p. 830.CrossRefGoogle Scholar
11.Nefedov, V.I. and Sokolov, A.N., Russ. J. Inorg. Chem. 34 (1989) p. 1557.Google Scholar
12.Myhra, S., Pham, D.K., Smart, R.St.C., and Turner, P.S., in Science of Ceramic Interfaces, edited by Nowotny, J. (Elsevier, Amsterdam, 1991) p. 569.Google Scholar
13.Bansal, N.P., NASA Tech. Memo. TM-105391 (1992).Google Scholar
14.Clark, D.E. and Zoitos, B.K., Corrosion of Glass, Ceramics and Ceramic Superconductors (Noyes Publications, Park Ridge, NJ, 1992) Section IV.Google Scholar
15.Nagakura, S., Hirotsu, Y., Sasaki, J., Miyagawa, K., Nakamura, Y., and Brito, M.E., Ultramicroscopy 39 (1991) p. 254.CrossRefGoogle Scholar
16.Nefedov, V.I., Sokolov, A.N., Tyzykhov, M.A., Oleinikov, N.N., Yeremina, Y.A., and Kolotyrnika, M.A., J. Electr. Spect. Rel. Phenom. 49 (1989) p. 47.CrossRefGoogle Scholar
17.Hyde, B.G., Thompson, J.G., Withers, R.L., FitzGerald, J.G., Stewart, A.M., Bevan, D.J.M., Anderson, J.S., Bitmead, J., and Paterson, M.S., Nature 327 (1987) p. 402.CrossRefGoogle Scholar
18.Dexin, Z., Mingshan, X., Ziqing, Z.,Shubin, Y., Huansui, Z., and Shuxia, S., Solid State Commun. 65 (1988) p. 339.CrossRefGoogle Scholar
19.Trolier, S.E., Atkinson, S.D., Fuierer, P.A., Adair, J.H., and Newnham, R.E., Am. Ceram. Soc. Bull. 67 (1988) p. 759.Google Scholar
20.Morss, L.R., Sonnenberger, D.C., and Thorn, R.J., in High-Temperature Superconductors, edited by Brodsky, M.B., Dynes, R.C., Kitazawa, K., and Tuller, H.L. (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, 1988) p. 571.Google Scholar
21.Horowitz, H.S., Bordia, R.K., Flippen, R.B., Johnson, R.E., and Chowdhry, U., Mater. Res. Bull. 23 (1988) p. 821.CrossRefGoogle Scholar
22.Chaudhari, S.M., Viswanathan, V., Bendre, S.T., Nawale, P.P., Kanetkar, S.M., and Ogale, S.B., J. Appl. Phys. 66 (1989) p. 4509.CrossRefGoogle Scholar
23.Pham, D.K., Ru-Peng, Zhao, Fielding, P.E., Myhra, S., and Turner, P.S., J. Mater. Res. 6 (1991) p. 1148.CrossRefGoogle Scholar
24.Zhou, J-P. and McDevitt, J.T., Chem. Mater. 4 (1992) p. 953.CrossRefGoogle Scholar
25.Mukaida, H. and Nakao, M., Jpn. Corros. Eng. 40 (1991) p. 491.CrossRefGoogle Scholar
26.Thomas, J.H. and Labib, M.E., AIP Conf. Proc. 165 (1988) p. 374.CrossRefGoogle Scholar
27.Büyüklimanli, T.H. and Simmons, J.H., Phys. Rev. B 44 (1991) p. 727.CrossRefGoogle Scholar
28.Dominec, H., Smrčka, L., and Vašek, P., Solid State Commun. 65 (1988) p. 373.CrossRefGoogle Scholar
29.Barkatt, A., Hojaji, H., and Michael, K.A., Adv. Ceram. Mater. 2 (1987) p. 701.CrossRefGoogle Scholar
30.Frase, K.G., Liniger, E.G., and Clarke, D.R., Adv. Ceram. Mater. 2 (1987) p. 698.CrossRefGoogle Scholar
31.Kitazawa, K., Kishio, K., Hasegawa, T., Nakamura, O., Shimoyama, J., Sugii, N., Ohtomo, A., Yaegashi, S., and Fueki, K., Jpn. J. Appl. Phys. 26 (1987) p. L1979.CrossRefGoogle Scholar
32.Iskevitch, E. and Chaim, R., Philos. Mag. Lett. 61 (1990) p. 209.CrossRefGoogle Scholar
33.Liu, H.K., Dou, S.X, Bourdillon, A.J., and Sorrell, C.C., Supercond. Sci. Technol. 1 (1988) p. 194.CrossRefGoogle Scholar
34.Barkatt, A., Hojaji, H., and Michael, K.A., Mater. Res. Bull. 23 (1988) p. 735.CrossRefGoogle Scholar
35.Dousek, F.P., Physica C 171 (1990) p. 156.CrossRefGoogle Scholar
36.McDivitt, J.T., Longmire, M., Gollmar, R., Jernigan, J.C., Dalton, E.F., McCarley, R., and Murray, R.W., J. Electroanal. Chem. 243 (1988) p. 465.CrossRefGoogle Scholar
37.McDivitt, J.T., McCarley, R.L., Dalton, E.F., Gollmar, R., Murray, R.W., Collman, J., Yee, G.T., and Little, W.A., ACS Symp. Ser. 377 (1988) p. 207.CrossRefGoogle Scholar
38.Hepburn, B.P., Lau, H.L., Lyon, S.B., Newman, R.C., Thompson, G.E., and Alford, N., Corrosion Sci. 33 (1992) p. 515.CrossRefGoogle Scholar
39.Salvador, P., Fierro, J.L.G., Amador, J., Cascales, C., and Rasines, I., J. Solid State Chem. 81 (1989) p. 240.CrossRefGoogle Scholar
40.Rupeng, Z., Goringe, M.J., Myhra, S., and Turner, P.S., Philos. Mag. A 66 (1992) p. 491.CrossRefGoogle Scholar
41.Wang, J., Stevens, R., and Bultitude, J., J. Mater. Sci. 23 (1988) p. 3393.CrossRefGoogle Scholar
42.Zandbergen, H.W., Gronsky, R., and Thomas, G., Phys. Status Solidi A 105 (1988) p. 207.CrossRefGoogle Scholar
43.Larkins, G.L. Jr., Lu, Q., Jones, W.K., Kennedy, R.J., and Chern, G., Physica C 173 (1991) p. 201.CrossRefGoogle Scholar
44.Sriram, M.A., Ponce, L., and Murr, L.E., Appl. Phys. Lett. 58 (1991) p. 1208.CrossRefGoogle Scholar
45.Morrish, A.H., Zhou, X.Z., Raudsepp, M., Maartense, I., Eaton, J.A., and Luo, Y.L., Can. J. Chem. 65 (1987) p. 808.Google Scholar
46.Hojaji, H., Barkatt, A., and Hein, R.A., Mater. Res. Bull. 23 (1988) p. 869.CrossRefGoogle Scholar
47.Svoboda, P., Vašek, P., Smrčkova, O., Sýkorová, D., Plecháček, V., and Nevřina, M., Solid State Commun. 75 (1990) p. 331.CrossRefGoogle Scholar
48.Zhang, Y. and Heiden, C., Sou J. Low Temp. Phys. 16 (1990) p. 344.Google Scholar
49.Ono, A., Takenouchi, S., and Ishizawa, Y., Jpn. J. Appl. Phys. 30 (1991) p. L464.CrossRefGoogle Scholar
50.Chandler, G.T., Reference 14, p. 583.Google Scholar
51.Barkatt, A., Hojaji, H., and Michael, K.A., Reference 14, p. 548.Google Scholar
52.Barba, M.F., Ortega, P., and Moya, J.S., Mater. Lett. 10 (1990) p. 149.CrossRefGoogle Scholar
53.Ashby, C.I.H., Martens, J., Plut, T.A., Ginley, D.S., and Phillips, J.M., Appl. Phys. Lett. 60 (1992) p. 2147.CrossRefGoogle Scholar
54.Myhra, S., Chalker, P.R., Moseley, P.T., and Riviere, J.C., Physica C 165 (1990) p. 270.CrossRefGoogle Scholar
55.Saiz, E. and Moya, J.S., Supercond. Sci. Technol. 5 (1992) p. 130.CrossRefGoogle Scholar
56.Ohara, T., Sakuta, K., Kamishiro, M., and Kobayashi, T., Jpn. J. Appl. Phys. 30 (1991) p. L2085.CrossRefGoogle Scholar
57.Gallagher, P.K., Grader, G.S., and O'Bryan, H.M. Jr., Mater. Res. Bull. 23 (1988) p. 1491.CrossRefGoogle Scholar
58.Zhang, L., Chen, J., Chan, H.M., and Harmer, M.P., J. Am. Ceram. Soc. 72 (1989) p. 1997.CrossRefGoogle Scholar
59.Gao, Y., Merkle, K.L., Zhang, C., Balachandran, U., and Poeppel, R., J. Mater. Res. 5 (1990) p. 1363.CrossRefGoogle Scholar
60.Lee, W-K. and Nowick, A.S., J. Mater. Res. 5 (1990) p. 1855.CrossRefGoogle Scholar
61.Borowlec, K., Przyluski, J., and Kolbrecka, K., J. Am. Ceram. Soc. 74 (1991) p. 2007.CrossRefGoogle Scholar
62.Gaier, J.R., Hepp, A.H., Curtis, H.B., Schupp, D.A., Hambourger, P.D., and Blue, J.W., NASA Tech. Memo. TM-101401 (1988).Google Scholar
63.Akachi, T., Escudero, R., Barrio, R.A., Rios-Jara, D., and Banos, L., J. Phys. C 21 (1988) p. 2565.Google Scholar
64.Salvador, P., Fernandez-Sanchez, E., Dominguez, J.A. Garcia, Amador, J., Cascales, C., and Raisines, I., Solid State Commun. 70 (1989) p. 71.CrossRefGoogle Scholar
65.Sokolov, A.N., Eremina, E.A., Tyzykhov, M.A., Oleinikov, N.N., and Nefedov, V.I., Russ. J. Inorg. Chem. 34 (1989) p. 1093.Google Scholar
66.Appelman, E.H., Morss, L.R., Kini, A.M., Geiser, U., Umezawa, A., Crabtree, G.W., and Carlson, K.D., Inorg. Chem. 26 (1987) p. 3237.CrossRefGoogle Scholar
67.Kurtz, R.L., Stockbauer, R., Madey, T.E., Mueller, D., Shih, A., and Toth, L., Phys. Rev. B 37 (1988) 7936.CrossRefGoogle Scholar
68.Ohbayashi, K., Ogita, N., Udagawa, M., Aoki, Y., Maeno, Y., and Fujita, T., Jpn. J. Appl. Phys. 26 (1987) p. L420.CrossRefGoogle Scholar
69.Kishio, K., Sugii, N., Kitazawa, K., and Fueki, K., Jpn. J. Appl. Phys. 26 (1987) p. L466.CrossRefGoogle Scholar
70.Polla, G., Acha, C., Leyva, A.G., and Benyacar, M.A.R., Solid State Commun. 76 (1990) p. 1253.CrossRefGoogle Scholar
71.Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. 26 (1988) p. L209.CrossRefGoogle Scholar
72.Yoshimura, M., Ishikawa, Y., Inoue, S., and Sōmiya, S., MRS Int. Mtg. Adv. Mater. 6 (1989) p. 421.Google Scholar
73.Yoshikawa, K., Yoshida, M., and Nakano, M., Jpn. J. Appl. Phys. 27 (1988) p. L2324.CrossRefGoogle Scholar
74.Vašek, P., Svoboda, P., Smrčkova, O., and Sýkorová, D., Solid State Commun. 71 (1989) p. 403.CrossRefGoogle Scholar
75.Katsuyestu, H., Tunt. Oy. Tun. Yaat. 36 (1989) p. 523.Google Scholar
76.Jin, S-G., Zhu, Z-Z., Liu, L-M., and Huang, Y-L., Solid State Commun. 74 (1990) p. 1087.CrossRefGoogle Scholar
77.Zhuo, W., Hong, W., Shuxia, S., and Xiaonong, S., J. Mater. Sci.: Mater. Elec. 1 (1990) p. 87.Google Scholar
78.Crossley, A., Graves, P.R., and Myhra, S., Physica C 176 (1991) p. 106.CrossRefGoogle Scholar
79.Hotta, K., Magome, H., Sugiyama, Y., Suzuki, T., and Hirose, H., Supercond. Sci. Technol. 4 (1991) p. 587.CrossRefGoogle Scholar
80.Monnereau, O., Russ, E., Suliga, I., Estienne, J., Périchaud, A., Badèche, T., Vacquier, G., Casalot, A., and Boulesteix, C., Mater. Sci. Eng. B14 (1992) p. 156.CrossRefGoogle Scholar
81.Gao, W. and Sande, J.B. Vander, Mater. Lett. 12 (1991) p. 47.CrossRefGoogle Scholar
82.Wadayama, Y., Kudo, K., Nagata, A., Ikeda, K., Hanada, S., and Izumi, O., Jpn. J. Appl. Phys. 27 (1988) p. L1221.CrossRefGoogle Scholar
83.Stucki, F., Bruesch, P., and Baumann, T., Physica C 155–153 (1988) p. 200.CrossRefGoogle Scholar
84.Flavell, W.R., Laverty, J.H., Law, D.S-L., Lindsay, R., Muryn, C.A., Flipse, C.F.J., Raiker, G.N., Wincott, P.L., and Thornton, G., Phys. Rev. B 41 (1990) p. 11623.CrossRefGoogle Scholar
85.Larkins, G.L. Jr., Lu, Q., Albaijes, D., Levay, C., Laurence, R., and Jones, W.K., Supercond. Sci. Technol. 4 (1991) p. 465.CrossRefGoogle Scholar
86.Lu, Q., Larkins, G.L. Jr., Jones, W.K., Kennedy, R.J., and Chern, G., IEEE Trans. Magn. 27 (1991) p. 1154.CrossRefGoogle Scholar
87.Flavell, W.R., Roberts, A.J., Morris, B.C., Hoad, D.R.C., Twedell, I., Neklesa, A., Lindsay, R., Thornton, G., Wincott, P.L., and Turner, T.S., Supercond. Sci. Technol. 5 (1992) p. 648.CrossRefGoogle Scholar
88.Riley, D.R., Zhou, J-P., Manthiram, A., and McDevitt, J.T., in Layered Superconductors: Fabrication, Properties and Applications, edited by Shaw, D.T., Tsuei, C.C., Schneider, T.R., and Shiohara, Y. (Mater. Res. Soc. Symp. Proc. 275, Pittsburgh, PA, 1992) p. 711.Google Scholar
89.Bűyűklimanli, T.H. and Simmons, J.H., Reference 14, p. 615.Google Scholar
90.Chang, C-A., Appl. Phys. Lett. 53 (1988) p. 1113.CrossRefGoogle Scholar
91.Mankiewich, P.M., Scofield, J.G., Skocpol, W.J., Howard, R.P., Dayem, A.H., and Good, E., Appl. Phys. Lett. 51 (1987) p. 1753.CrossRefGoogle Scholar
92.Chang, C-A. and Tsai, J.A., Appl. Phys. Lett. 53 (1988) p. 1976.CrossRefGoogle Scholar
93.Vasquez, R.P., Hunt, B.D., and Foote, M.C., Appl. Phys. Lett. 53 (1988) p. 2692.CrossRefGoogle Scholar
94.Jin, S.G., Liv, L.G., Zhy, Z.A., and Huang, Y.L., Solid State Commun. 69 (1989) p. 179.CrossRefGoogle Scholar
95.Ichikawa, Y., Adachi, H., Mitsuyu, T., and Wasa, K., Jpn. J. Appl. Phys. 27 (1988) p. L381.CrossRefGoogle Scholar
96.Hill, D.M., Mayer, H.M. III, Weaker, J.H., and Nelson, D.L., Appl. Phys. Lett. 53 (1988) p. 1657.CrossRefGoogle Scholar
97.Morohashi, S., Tamura, H., Yoshida, A., and Hasuo, S., Appl. Phys. Lett. 52 (1988) p. 1897.CrossRefGoogle Scholar
98.Sato, K., Omae, S., Kojima, K., Hashimoto, T., and Koinuma, H., Jpn. J. Appl. Phys. 27 (1988) p. L2088.CrossRefGoogle Scholar
99.Reddy, G.S.N., Gupta, A.K., Tomar, V.S., Khare, N., Ojha, V.N., and Walia, D.K., Cryogenics 31 (1991) p. 209.CrossRefGoogle Scholar
100.Clark, D.E., private communication.Google Scholar
101.Selmi, F.A. and Amarakoon, V.R.W., J. Am. Ceram. Soc. 71 (1989) p. 934.CrossRefGoogle Scholar
102.Selmi, F.A. and Amarakoon, V.R.W., Ceram. Eng. Soc. Proc. 8 (1987) p. 1120.Google Scholar
103.Brinker, C.J. and Scherer, G.W, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, New York, 1990).Google Scholar
104.Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics, and Specialty Shapes, edited by Klein, L.C. (Noyes Publications, Park Ridge, NJ, 1988).Google Scholar
105.Brooks, K. and Amarakoon, V.R.W., J. Am. Ceram. Soc. 74 (1991) p. 851.CrossRefGoogle Scholar
106.Fagan, J.G. and Amarakoon, V.R.W., J. Mater. Res., in press.Google Scholar
107.Bayya, S. and Amarakoon, V.R.W., Reference 14, p. 632.Google Scholar
108.Kammlott, G.W., Tiefel, T.H., and Jin, S., Appl. Phys. Lett. 56 (1990) p. 2459.CrossRefGoogle Scholar
109.Rao, A.S. and O'Connor, L.S., in High Temperature Superconducting Compounds III, edited by Wang, S.H., Gupta, A.D., and Collings, E. (The Minerals, Metals and Materials Society, Warrendale, PA, 1991).Google Scholar
110.Melt Processed High Temperature Superconductors, edited by Murakami, M. (World Scientific, River Edge, NJ, 1992).Google Scholar
111.Fagan, J.G., PhD thesis, Alfred University, Alfred, NY, 1992.Google Scholar