Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T03:59:07.509Z Has data issue: false hasContentIssue false

The Electronic Structure of High Tc Copper-Oxide Superconductors from Photoemission Spectroscopy

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

This article will summarize the information gained from photoemission spectroscopy (PES) studies of the electronic structure of high temperature superconductor (HTSC) materials, with emphasis on distinguishing models for the normal state. Inverse photoemission spectroscopy (IPES) is a closely related measurement, and taken together PES and IPES yield the single-particle electronic structure, meaning the the spectrum to remove and add electrons, i.e., the electronic ionization and affinity spectrum. It is assumed that the sudden approximation holds, so that the photon event can be characterized by a photoemission cross section σ. The emission from a particular kind of electronic state i can often be identified because its cross section has a particular photon energy (hv) dependence σ (hv).

We will emphasize a few recent results especially pertinent to the conceptual issues posed by these materials, and we will divide the discussion between angle-integrated spectra and angle-resolved spectra. For angle-integrated spectra, electrons are collected from the sample surface in a large solid angle, while for angle-resolved spectra, electrons are collected in a well-defined direction. Angle resolution can be used to select emitted electrons of a particular value of crystal momentum k.

Type
Properties of High Tc Superconductors
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mott, N.F., Proc. Phys. Soc, London, Sect. A 62 (1949) p. 416.CrossRefGoogle Scholar
2.Anderson, P.W., Phys. Rev. 115 (1959) p. 2.CrossRefGoogle Scholar
3.Hubbard, J., Proc. Roy. Soc. A 276 (1963) p. 238.Google Scholar
4.Anderson, P.W., in Proc. Enrico Fermi International School of Physics, Frontiers and Borderlines in Many Body Physics (Varenna, July 1987, North Holland, Amsterdam); P.W. Anderson, preprints; P.W. Anderson and Y. Ren, preprint.Google Scholar
5.Luttinger, J.M., Phys. Rev. 119 (1960) p. 1153.CrossRefGoogle Scholar
6.Massida, S., Hamada, N., Yu, J.J., and Freeman, A.J., Physica C 157 (1989) p. 571.CrossRefGoogle Scholar
7.Haldane, F.D.M., J. Phys. C 14 (1981) p. 2585.Google Scholar
8.Gunnarsson, O., Allen, J.W., Jepsen, O., Fujiwara, T., Andersen, O.K., Olson, C.G., Maple, M.B., Kang, J.-S., Liu, L.Z., Park, J.-H., Anderson, R.O., Ellis, W.P., Liu, R., Markert, J.T., Dalichaouch, Y., Shen, Z.-X., Lindberg, P.A.P., Wells, B.O., Dessau, P.S., Borg, A., Lindau, I., and Spicer, W.E., Phys. Rev. B (Rapid Commun., 1990), in press.Google Scholar
9.Takagi, H., Uchida, S., and Tokufa, Y., Phys. Rev. Lett. 62 (1989) p. 1197.CrossRefGoogle Scholar
10.Markert, J.T. and Maple, M.B., Solid State Commun. 70 (1989) p. 145.CrossRefGoogle Scholar
11.McMahan, A.K., Martin, R.M. and Satpathy, S., Phys. Rev. B 38 (1988) p. 6650.CrossRefGoogle Scholar
12.Eskes, H. and Sawatzky, G.A., Phys. Rev. Lett. 61 (1988) p. 1415.CrossRefGoogle Scholar
13.Sawatzky, G.A. and Allen, J.W., Phys. Rev. Lett. 53 (1984) p. 2339.CrossRefGoogle Scholar
14.Zaanen, J., Sawatzky, G.A., and Allen, J.W., Phys. Rev. Lett. 55 (1985) p. 418.CrossRefGoogle Scholar
15.Allen, J.W., J. Magn. Magn. Mat. 47 & 48 (1985) p. 168.CrossRefGoogle Scholar
16.Zhang, F.C. and Rice, T.M., Phys. Rev. B 37 (1988) p. 3759.CrossRefGoogle Scholar
17.Allen, J.W., Olson, C.G., Maple, M.B., Kang, J.-S., Liu, L.Z., Park, J.-H., Anderson, R.O., Ellis, W.P., Markert, J.T., Dalichaouch, Y. and Liu, R., Phys. Rev. Lett. 64 (1990) p. 595.CrossRefGoogle Scholar
18.Shen, Z.-X., Allen, J.W., Yeh, J.J., Kang, J.-S., Ellis, W., Spicer, W.E., Lindau, I., Maple, M.B., Dalichaouch, Y.D., Torikachvili, M.S., Sun, J.Z., and Geballe, T.H., Phys. Rev. B 36 (1987) p. 8414.CrossRefGoogle Scholar
19.Olson, C.G., Liu, R., Yang, A.-B., Lynch, D.W., Arko, A.J., List, R.S., Veal, B.W., Chang, Y.C., Jiang, P.Z., and Paulikas, A. P., Phys. Rev. B (1990), in press.Google Scholar
20.Massida, S., Yu, J. and Freeman, A.J., Physica C 52 (1988) p. 251.CrossRefGoogle Scholar
21.Manzke, R., Buslaps, T., Claessen, R., Skibowski, M., and Fink, J., Physica C (1990), in press.Google Scholar
22.Olson, C.G., Liu, R., Yang, A.-B., Lynch, D.W., Arko, A.J., List, R.S., Veal, B.W., Chang, Y.C., Jiang, P.Z., and Paulikas, A. P., Science 245 (1989) p. 731.CrossRefGoogle Scholar
23.Imer, J.M., Patthey, F., Dardel, B., Schneider, W.-D., Baer, Y., Petroff, Y., and Zettl, A., Phys. Rev. Lett. 62 (1989) p. 336.CrossRefGoogle Scholar
24.Manzke, R., Buslaps, T., Claessen, R., and Fink, J., Europhysics Lett. 9 (1989) 477.CrossRefGoogle Scholar