Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T08:24:23.290Z Has data issue: false hasContentIssue false

Electron tomography for functional nanomaterials

Published online by Cambridge University Press:  09 April 2020

Robert Hovden
Affiliation:
Department of Materials Science and Engineering, University of Michigan, USA; [email protected]
David A. Muller
Affiliation:
School of Applied and Engineering Physics, and Kavli Institute for Nanoscale Science, Cornell University, USA; [email protected]
Get access

Abstract

Modern nanomaterials contain complexity that spans all three dimensions—from multigate semiconductors to clean energy nanocatalysts to complex block copolymers. For nanoscale characterization, it has been a long-standing goal to observe and quantify the three-dimensional (3D) structure—not just surfaces, but the entire internal volume and the chemical arrangement. Electron tomography estimates the complete 3D structure of nanomaterials from a series of two-dimensional projections taken across many viewing angles. Since its first introduction in 1968, electron tomography has progressed substantially in resolution, dose, and chemical sensitivity. In particular, scanning transmission electron microscope tomography has greatly enhanced the study of 3D nanomaterials by providing quantifiable internal morphology and spectroscopic detection of elements. Combined with recent innovations in computational reconstruction algorithms and 3D visualization tools, scientists can interactively dissect volumetric representations and extract meaningful statistics of specimens. This article highlights the maturing field of electron tomography and the widening scientific applications that utilize 3D structural, chemical, and functional imaging at the nanometer and subnanometer length scales.

Type
Nanoscale Tomography Using X-rays and Electrons
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Levin, B.D.A., Padgett, E., Chen, C.-C., Scott, M.C., Xu, R., Theis, W., Jiang, Y., Yang, Y., Ophus, C., Zhang, H., Ha, D.-H., Wang, D., Yu, Y., Abruña, H.D., Robinson, R.D., Ercius, P., Kourkoutis, L.F., Miao, J., Muller, D.A., Hovden, R., Sci. Data 3, 160041 (2016).CrossRefGoogle Scholar
De Rosier, D.J., Klug, A., Nature 217 (5124), 130 (1968).CrossRefGoogle Scholar
Crowther, R.A., Amos, L.A., Finch, J.T., Rosier, D.J.D., Klug, A., Nature 226 (5244), 421 (1970).CrossRefGoogle Scholar
Hoppe, W., Hoppe-Seyler’s Z. Physiol. Chem. 355, 1483 (1974).Google Scholar
Hoppe, W., Schramm, H.J., Sturm, M., Hunsmann, N., Gaßmann, J., Z. Naturforsch. A 31 (11), 1380 (1976).Google Scholar
Protein Data Bank in Europe, https://www.ebi.ac.uk/pdbe/emdb/statistics_emmethod.html (accessed December 2019).Google Scholar
Jinnai, H., Nishikawa, Y., Spontak, R.J., Smith, S.D., Agard, D.A., Hashimoto, T., Phys. Rev. Lett. 84 (3), 518 (2000).CrossRefGoogle Scholar
Koster, A.J., Ziese, U., Verkleij, A.J., Janssen, A.H., de Jong, K.P., J. Phys. Chem. B 104 (40), 9368 (2000).CrossRefGoogle Scholar
Henderson, R., Unwin, P., Nature 257, 28 (1975).CrossRefGoogle Scholar
Slater, T.J.A., Janssen, A., Camargo, P.H.C., Burke, M.G., Zaluzec, N.J., Haigh, S.J., Ultramicroscopy 162, 61 (2016).CrossRefGoogle Scholar
Midgley, P.A., Weyland, M., Ultramicroscopy 96 (3), 413 (2003).CrossRefGoogle Scholar
Candes, E., Romberg, J., “Robust Signal Recovery from Incomplete Observations,” 2006 IEEE Int. Conf. Image Proc. (2006), pp. 12811284.Google Scholar
Brown, L.M., Batson, P.E., Dellby, N., Krivanek, O.L., Ultramicroscopy 157, 88 (2015).CrossRefGoogle Scholar
Midgley, P.A., Weyland, M., Thomas, J.M., Johnson, B.F.G., Chem. Commun. 10, 907 (2001).CrossRefGoogle Scholar
Zhang, H., Ha, D.-H., Hovden, R., Kourkoutis, L.F., Robinson, R.D., Nano Lett . 11 (1), 188 (2010).CrossRefGoogle Scholar
Radon, J., Mathematische-Physische 69, 262 (1917).Google Scholar
International Technology Roadmap for Semiconductors, (2014), http://www.itrs2.net.Google Scholar
Cherns, P.D., Lorut, F., Becu, S., Dupré, C., Tachi, K., Cooper, D., Chabli, A., Ernst, T., AIP Conf. Proc. 1173 (1), 290 (2009).CrossRefGoogle Scholar
Xie, Y., Kim, W., Kim, Y., Kim, S., Gonsalves, J., BrightSky, M., Lam, C., Zhu, Y., Cha, J.J., Adv. Mater. 30 (9), 1705587 (2018).CrossRefGoogle Scholar
Kübel, C., Kübel, J., Kujawa, S., Luo, J.S., Lo, H.M., Russell, J.D., AIP Conf. Proc. 817 (1), 223 (2006).CrossRefGoogle Scholar
Ercius, P., Weyland, M., Muller, D.A., Gignac, L.M., Appl. Phys. Lett. 88 (24), 243116 (2006).CrossRefGoogle Scholar
Xin, H.L., Ercius, P., Hughes, K.J., Engstrom, J.R., Muller, D.A., Appl. Phys. Lett. 96 (22), 223108 (2010).CrossRefGoogle Scholar
Möbus, G., Doole, R.C., Inkson, B.J., Ultramicroscopy 96 (3), 433 (2003).CrossRefGoogle Scholar
Zaluzec, N.J., Micros. Today 17 (4), 56 (2009).CrossRefGoogle Scholar
von Harrach, H.S., Dona, P., Freitag, B., Soltau, H., Niculae, A., Rohde, M., Microsc. Microanal. 15 (2), 208 (2009).CrossRefGoogle Scholar
Lepinay, K., Lorut, F., Pantel, R., Epicier, T., Micron 47, 43 (2013).CrossRefGoogle Scholar
Yurtsever, A., Weyland, M., Muller, D.A., Appl. Phys. Lett. 89 (15), 151920 (2006).CrossRefGoogle Scholar
Weyland, M., Midgley, P.A., Microsc. Microanal. 9 (6), 542 (2003).CrossRefGoogle Scholar
Gass, M.H., Koziol, K.K.K., Windle, A.H., Midgley, P.A., Nano Lett. 6 (3), 376 (2006).CrossRefGoogle Scholar
Collins, S.M., Ringe, E., Duchamp, M., Saghi, Z., Dunin-Borkowski, R.E., Midgley, P.A., ACS Photonics 2 (11), 1628 (2015).CrossRefGoogle Scholar
Yedra, L., Eljarrat, A., Arenal, R., Pellicer, E., Cabo, M., López-Ortega, A., Estrader, M., Sort, J., Baró, M.D., Estradé, S., Peiró, F., Ultramicroscopy 122, 12 (2012).CrossRefGoogle Scholar
Jarausch, K., Thomas, P., Leonard, D.N., Twesten, R., Booth, C.R., Ultramicroscopy 109 (4), 326 (2009).CrossRefGoogle Scholar
Wang, D., Yu, Y., Xin, H.L., Hovden, R., Ercius, P., Mundy, J.A., Chen, H., Richard, J.H., Muller, D.A., DiSalvo, F.J., Abruña, H.D., Nano Lett. 12 (10), 5230 (2012).CrossRefGoogle Scholar
Padgett, E., Andrejevic, N., Liu, Z., Kongkanand, A., Gu, W., Moriyama, K., Jiang, Y., Kumaraguru, S., Moylan, T.E., Kukreja, R., Muller, D.A., J. Electrochem. Soc. 165 (3), F173 (2018).CrossRefGoogle Scholar
Yu, Y., Xin, H.L., Hovden, R., Wang, D., Rus, E.D., Mundy, J.A., Muller, D.A., Abruña, H.D., Nano Lett. 12 (9), 4417 (2012).CrossRefGoogle Scholar
Genc, A., Kovarik, L., Gu, M., Cheng, H., Plachinda, P., Pullan, L., Freitag, B., Wang, C., Ultramicroscopy 131, 24 (2013).CrossRefGoogle Scholar
Xia, W., Yang, Y., Meng, Q., Deng, Z., Gong, M., Wang, J., Wang, D., Zhu, Y., Sun, L., Xu, F., Li, J., Xin, H.L., ACS Nano 12 (8), 7866 (2018).CrossRefGoogle Scholar
Klug, A., Crowther, R.A., Nature 238 (5365), 435 (1972).CrossRefGoogle Scholar
Bracewell, R.N., Riddle, A.C., Astrophys. J. 150, 427 (1967).CrossRefGoogle Scholar
Klug, A., Philos. Trans. R. Soc. Lond. B Biol. Sci. 261 (837), 173 (1971).Google Scholar
Hovden, R., Ercius, P., Jiang, Y., Wang, D., Yu, Y., Abruña, H.D., Elser, V., Muller, D.A., Ultramicroscopy 140, 26 (2014).CrossRefGoogle Scholar
Hovden, R., Xin, H.L., Muller, D.A., Microsc. Microanal. 17 (1), 75 (2010).CrossRefGoogle Scholar
Scott, M.C., Chen, C.-C., Mecklenburg, M., Zhu, C., Xu, R., Ercius, P., Dahmen, U., Regan, B.C., Miao, J., Nature 483 (7390), 444 (2012).CrossRefGoogle Scholar
Yang, Y., Chen, C.-C., Scott, M.C., Ophus, C., Xu, R., Pryor, A., Wu, L., Sun, F., Theis, W., Zhou, J., Eisenbach, M., Kent, P.R.C., Sabirianov, R.F., Zeng, H., Ercius, P., Miao, J., Nature 542 (7639), 75 (2017).CrossRefGoogle Scholar
Zhou, J., Yang, Y., Ercius, P., Miao, J., MRS Bull. 45 (4), 290 (2020).Google Scholar
McEwen, B.F., Marko, M., Hsieh, C.E., Mannella, C., J. Struct. Biol. 138, 47 (2002).Google Scholar
Howells, M.R., Beetz, T., Chapman, H.N., Cui, C., Holton, J.M., Jacobsen, C.J., Kirz, J., Lima, E., Marchesini, S., Miao, H., Sayre, D., Shapiro, D.A., Spence, J.C.H., Starodub, D.J. Electron Spectrosc. Relat. Phenom. 170 (1), 4 (2009).CrossRefGoogle Scholar
Gilbert, P., J. Theor. Biol. 36 (1), 105 (1972).CrossRefGoogle Scholar
O’Connor, Y.Z., Fessler, J.A., IEEE Trans. Med. Imaging 25 (5), 582 (2006).CrossRefGoogle Scholar
Pryor, A., Yang, Y., Rana, A., Gallagher-Jones, M., Zhou, J., Lo, Y.H., Melinte, G., Chiu, W., Rodriguez, J.A., Miao, J., Sci. Rep. 7 (1), 1 (2017).CrossRefGoogle Scholar
Batenburg, K.J., Bals, S., Sijbers, J., Kübel, C., Midgley, P.A., Hernandez, J.C., Kaiser, U., Encina, E.R., Coronado, E.A., Van Tendeloo, G., Ultramicroscopy 109 (6), 730 (2009).CrossRefGoogle Scholar
Candès, E.J., Tao, T., IEEE Trans. Inf. Theory 52 (12) 5406 (2006).CrossRefGoogle Scholar
Candès, E.J., Romberg, J., Tao, T., IEEE Trans. Inf. Theory 52 (2), 489 (2006).CrossRefGoogle Scholar
Saghi, Z., Holland, D.J., Leary, R., Falqui, A., Bertoni, G., Sederman, A.J., Gladden, L.F., Midgley, P.A., Nano Lett. 11 (11), 4666 (2011).CrossRefGoogle Scholar
Jiang, Y., Hovden, R., Muller, D.A., Elser, V., Microsc. Microanal. 20 (6), 796 (2014).CrossRefGoogle Scholar
Schwartz, J., Jiang, Y., Wang, Y., Aiello, A., Bhattacharya, P., Yuan, H., Mi, Z., Bassim, N., Hovden, R., Microsc. Microanal. 25 (3), 705 (2019).CrossRefGoogle Scholar
Kremer, J.R., Mastronarde, D.N., McIntosh, J.R., J. Struct. Biol. 116 (1), 71 (1996).CrossRefGoogle Scholar
Levin, B., Jiang, Y., Padgett, E., Waldon, S., Quammen, C., Harris, C., Ayachit, U., Hanwell, M., Ercius, P., Muller, D.A., Hovden, R., Micros. Today 26 (1) 12 (2018).CrossRefGoogle Scholar
Jiang, Y., Chen, Z., Han, Y., Deb, P., Gao, H., Xie, S., Purohit, P., Tate, M.W., Park, J., Gruner, S.M., Elser, V., Muller, D.A., Nature 559 (7714), 343 (2018).CrossRefGoogle Scholar
Panova, O., Ophus, C., Takacs, C.J., Bustillo, K.C., Balhorn, L., Salleo, A., Balsara, N., Minor, A.M., Nat. Mater. 18, 860 (2019).CrossRefGoogle Scholar
Gao, S., Wang, P., Zhang, F., Martinez, G.T., Nellist, P.D., Pan, X., Kirkland, A.I., Nat. Comm. 8 (1), 163 (2017).CrossRefGoogle Scholar
Migunov, V., Ryll, H., Zhuge, X., Simson, M., Strüder, L., Batenburg, K.J., Houben, L., Dunin-Borkowski, R.E., Sci. Rep. 5 (1), 1 (2015).CrossRefGoogle Scholar