Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-24T08:47:04.108Z Has data issue: false hasContentIssue false

Electrocatalytic water splitting using organic polymer materials-based hybrid catalysts

Published online by Cambridge University Press:  13 July 2020

Lijuan Niu
Affiliation:
Beijing University of Technology, China; [email protected]
Lu Sun
Affiliation:
Beijing University of Technology, China; [email protected]
Li An
Affiliation:
Beijing University of Technology, China; [email protected]
Dan Qu
Affiliation:
Beijing University of Technology, China; [email protected]
Xiayan Wang
Affiliation:
Beijing University of Technology, China; [email protected]
Zaicheng Sun
Affiliation:
Beijing University of Technology, China; [email protected]
Get access

Abstract

Sustainable and green energy sources are in high demand to meet the current human energy needs and environmental requirements. Hydrogen energy, with the highest energy density and zero carbon emission, is considered a potential solution. Hydrogen is primarily produced by splitting water. Rationally designed electrocatalysts are required to promote the cathodic hydrogen evolution reaction (HER) and the anodic oxygen evolution reaction (OER). Organic polymer matrices provide new opportunities for electrocatalytic water splitting due to their special physical and chemical characteristics and thermal stability. This article explains the role of organic polymers in electrocatalytic water decomposition from three aspects: ion-conductive polymers, conjugated conductive polymers, and carbon materials derived from organic polymers. We hope that this article will provide more rational ideas and promote the design of organic polymers for water-splitting electrocatalysis, and furnish more technical insights for the future of water electrolysis.

Type
Nanomaterials for Electrochemical Water Splitting
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Stamenkovic, V.R., Strmcnik, D., Lopes, P.P., Markovic, N.M., Nat. Mater. 16, 57 (2017).CrossRefGoogle Scholar
Yan, Y., Xia, B., Xu, Z., Wang, X., ACS Catal. 4, 1693 (2014).Google Scholar
Yin, X., Yan, Y., Miao, M., Zhan, K., Li, P., Yang, J., Zhao, B., Xia, B.Y., Chem. Eur. J. 24, 556 (2018).Google Scholar
Chen, W.-F., Muckerman, J.T., Fujita, E., Chem. Commun. 49, 8896 (2013).Google Scholar
Jiang, J., Liu, Q., Zeng, C., Ai, L., J. Mater. Chem. A 5, 16929 (2017).Google Scholar
Xia, B., Yan, Y., Wang, X., Lou, X.W., Mater. Horiz. 1, 379 (2014).CrossRefGoogle Scholar
Zou, X., Zhang, Y., Chem. Soc. Rev. 44, 5148 (2015).Google Scholar
Kibsgaard, J., Jaramillo, T.F., Besenbacher, F., Nat. Chem. 6, 248 (2014).CrossRefGoogle Scholar
Gao, X., Zhou, Y., Tan, Y., Liu, S., Cheng, Z., Shen, Z., Appl. Surf. Sci. 492, 8 (2019).Google Scholar
Cheng, Y., Dai, J., Song, Y., Zhang, Y., ACS Appl. Energy Mater. 2, 6851 (2019).Google Scholar
Yan, Y., He, T., Zhao, B., Qi, K., Liu, H., Xia, B.Y., J. Mater. Chem. A 6, 15905 (2018).Google Scholar
Guan, B.Y., Yu, X.Y., Wu, H.B., Lou, X.W.D., Adv. Mater. 29, 1703614 (2017).Google Scholar
Stern, L.A., Mocny, P., Vrubel, H., Bilgic, T., Klok, H.A., Hu, X., ACS Appl. Mater. Interfaces 10, 6253 (2018).CrossRefGoogle Scholar
Kovalenko, I., Zdyrko, B., Magasinski, A., Hertzberg, B., Milicev, Z., Burtovyy, R., Luzinov, I., Yushin, G., Science 334, 75 (2011).CrossRefGoogle Scholar
Wu, M., Xiao, X., Vukmirovic, N., Xun, S., Das, P.K., Song, X., Olalde-Velasco, P., Wang, D., Weber, A.Z., Wang, L.-W., Battaglia, V.S., Yang, W., Liu, G., J. Am. Chem. Soc. 135, 12048 (2013).Google Scholar
Park, S.-J., Zhao, H., Ai, G., Wang, C., Song, X., Yuca, N., Battaglia, V.S., Yang, W., Liu, G., J. Am. Chem. Soc. 137, 2565 (2015).Google Scholar
Kreuer, K.D., J. Membr. Sci. 185, 29 (2001).CrossRefGoogle Scholar
Zhang, F., Yang, M., Zhang, S., P. Fang, Polymers 11, 1268 (2019).Google Scholar
Günes, S., Neugebauer, H., Sariciftci, N.S., Chem. Rev. 107, 1324 (2007).CrossRefGoogle Scholar
Heinze, J., Frontana-Uribe, B.A., Ludwigs, S., Chem. Rev. 110, 4724 (2010).CrossRefGoogle Scholar
Mullangi, D., Dhavale, V., Shalini, S., Nandi, S., Collins, S., Woo, T., Kurungot, S., Vaidhyanathan, R., Adv. Energy Mater. 6, 1600110 (2016).CrossRefGoogle Scholar
Aiyappa, H.B., Thote, J., Shinde, D.B., Banerjee, R., Kurungot, S., Chem. Mater. 28, 4375 (2016).CrossRefGoogle Scholar
Wong, Y.L., Tobin, J.M., Xu, Z., Vilela, F., J. Mater. Chem. A 4, 18677 (2016).Google Scholar
Peng, P., Zhou, Z., Guo, J., Xiang, Z., ACS Energy Lett. 2, 1308 (2017).CrossRefGoogle Scholar
Venkata Rao, K., Haldar, R., Maji, T.K., George, S.J., Phys. Chem. Chem. Phys. 18, 156 (2016).CrossRefGoogle Scholar
Xu, Y., Jin, S., Xu, H., Nagai, A., Jiang, D., Chem. Soc. Rev. 42, 8012 (2013).Google Scholar
Wang, W., Zhou, M., Yuan, D., J. Mater. Chem. A 5, 1334 (2017).Google Scholar
Bhat, S.A., Das, C., Maji, T.K., J. Mater. Chem. A 6, 19834 (2018).Google Scholar
Dong, R., Pfeffermann, M., Liang, H., Zheng, Z., Zhu, X., Zhang, J., Feng, X., Angew. Chem. Int. Ed. Engl. 54, 12058 (2015).Google Scholar
Gangopadhyay, R., De, A., Chem. Mater. 12, 2064 (2000).Google Scholar
Guimard, N.K., Gomez, N., Schmidt, C.E., Prog. Polym. Sci. 32, 876 (2007).CrossRefGoogle Scholar
Ko, J.M., Rhee, H.W., Park, S.-M., Kim, C.Y., J. Electrochem. Soc. 137, 905 (1990).Google Scholar
Dalla Corte, D.A., Torres, C., Correa, P.d.S., Rieder, E.S., Malfatti, C.d.F., Int. J. Hydrogen Energy 37, 3025 (2012).CrossRefGoogle Scholar
Ibanez, J.G., Rincón, M.E., Gutierrez-Granados, S., Chahma, M.h., Jaramillo-Quintero, O.A., Frontana-Uribe, B.A., Chem. Rev. 118, 4731 (2018).CrossRefGoogle Scholar
Liao, G., Li, Q., Xu, Z., Prog. Org. Coat. 126, 35 (2019).Google Scholar
Lin, Y.X., Feng, W.J., Zhang, J.J., Xue, Z.H., Zhao, T.J., Su, H., Hirano, S.I., Li, X.H., Chen, J.S., Angew. Chem. Int. Ed. Engl. 57, 12563 (2018).Google Scholar
Antar, A., Naimi, Y., Takky, D., IOP Conf. Ser. Earth Environ. Sci. 161, 012027 (2018).CrossRefGoogle Scholar
Morales, D.V., Astudillo, C.N., Lattach, Y., Urbano, B.F., Pereira, E., Rivas, B.L., Arnaud, J., Putaux, J.-L., Sirach, S., Cobo, S., Moutet, J.-C., Collomb, M.-N., Fortage, J., Catal. Sci. Technol. 8, 4030 (2018).CrossRefGoogle Scholar
Antonietti, M., Oschatz, M., Adv. Mater. 30, e1706836 (2018).CrossRefGoogle Scholar
Han, S., Feng, Y., Zhang, F., Yang, C., Yao, Z., Zhao, W., Qiu, F., Yang, L., Yao, Y., Zhuang, X., Feng, X., Adv. Funct. Mater. 25, 3899 (2015).Google Scholar
Hua, S., Qu, D., An, L., Xi, G., Chen, G., Li, F., Zhou, Z., Sun, Z., Chin. J. Catal. 38, 1028 (2017).CrossRefGoogle Scholar
Yan, X.H., Prabhu, P., Xu, H., Meng, Z., Xue, T., Lee, J.M., Small Methods 4, 1900575 (2019).Google Scholar
Thirukumaran, P., Atchudan, R., Balasubramanian, R., Parveen, A.S., Kim, S.-C., Int. J. Hydrogen Energy 43, 13266 (2018).CrossRefGoogle Scholar
Chi, J.Q., Gao, W.K., Lin, J.H., Dong, B., Yan, K.L., Qin, J.F., Liu, Z.Z., Chai, Y.M., Liu, C.G., J. Colloid Interface Sci. 513, 151 (2018).CrossRefGoogle Scholar
Yang, J., Wang, X., Li, B., Ma, L., Shi, L., Xiong, Y., Xu, H., Adv. Funct. Mater. 27, 1606497 (2017).Google Scholar
Wang, H., Tang, C., Zhang, Q.. Adv. Funct. Mater. 28, 1803329 (2018).Google Scholar