Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T08:39:59.371Z Has data issue: false hasContentIssue false

Effects of Stress on Step Energies and Surface Roughness

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Strain relaxation in lattice-mismatched, heteroepitaxial systems is one of the classic problems in materials physics, which has gained new urgency with the increased applications of strained layers in microelectronic systems. In general both the structure and the integrity of the thin films are strongly influenced by strain. For instance it has long been known that under strain, the growth changes from an initial layer-by-layer growth mode to one with three-dimensional islanding. In the seminal works of van der Merwe, and Matthews and Blakeslee, this change in growth mode is explained in terms of the introduction of strain-relieving misfit dislocations, which appear when the film has reached some critical thickness. Recently it has become clear that this change in growth mode can take place even without the introduction of misfit dislocations. Such dislocation-free coherent islanding, or “roughening,” has been observed experimentally both in Ge/Si and in InGaAs/GaAs systems. Furthermore recent experiments show that in Ge/Si(100) systems, the thin films display a curious asymmetry with respect to the sign of the strain: Films under compression roughen by forming coherent islands while those under tension remain relatively smooth. A possible mechanism behind this strain-induced type of roughening is the subject of this article.

Type
Heteroepitaxy and Strain
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.van der Merwe, J.H., J. Appl. Phys. 34 (1963) p. 117; ibid. p. 123.CrossRefGoogle Scholar
2.Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 29 (1975) p. 273; ibid. 32 (1976) p. 265.CrossRefGoogle Scholar
3.Asai, M., Ueba, H., and Tatsuyama, C., J. Appl. Phys. 58 (1985) p. 2577; D.J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64 (1990) p. 1943; F.K. LeGoues, M. Copel, and R.M. Tromp, Phys. Rev. B 42 (1990) p. 11690.CrossRefGoogle Scholar
4.Guha, S., Madhukar, A., and Rajkumar, K.C., Appl. Phys. Lett. 57 (1990) p. 2110; C.W. Synder, B.G. Orr, D. Kessler, and L.M. Sander, Phys. Rev. Lett. 66 (1991) p. 3032.CrossRefGoogle Scholar
5.Xie, Y.H., Gilmer, G.H., Roland, C., Silverman, P.J., Buratto, S.K., Cheng, J.Y., Fitzgerald, E.A., Kortan, A.R., Schuppler, S., Marcus, M.A., and Citrin, P., Appl. Phys. Lett. 73 (1994) p. 3006.CrossRefGoogle Scholar
6.Asaro, R.J. and Tiller, W.A., Metall. Trans. 3 (1977) p. 1789.CrossRefGoogle Scholar
7.Grinfeld, M.A., Sov. Phys. Dokl. 31 (1986) p. 831.Google Scholar
8.Spencer, B.J., Voorhees, P.W., and Davis, S.H., Phys. Rev. Lett. 67 (1991) p. 3696.CrossRefGoogle Scholar
9.Yang, W.H. and Srolovitz, D.J., Phys. Rev. Lett. 71 (1993) p. 1593.CrossRefGoogle Scholar
10.Jesson, D.E., Pennycook, S.J., Baribeau, J-M., and Houghten, D.C., Phys. Rev. Lett. 71 (1993) p. 1744.CrossRefGoogle Scholar
11.Mo, Y-W., Savage, D.E., Swartzenruber, B.S., and Lagally, M.G., Phys. Rev. Lett. 65 (1990) p. 1020.CrossRefGoogle Scholar
12.Hembree, G.G. and Venables, J.A., Ultramicroscopy 47 (1992) p. 105.CrossRefGoogle Scholar
13.Tersoff, J. and Tromp, R.M., Phys. Rev. Lett. 70 (1993) p. 2783.Google Scholar
14.Onuki, A. and Nishimori, H., J. Phys. Soc. Jpn. 60 (1991) p. 1.CrossRefGoogle Scholar
15.Xie, Y.H., Fitzgerald, E.A., Monroe, C., Silverman, P.J., and Watson, G.D., J. Appl. Phys. 73 (1993) p. 8364.CrossRefGoogle Scholar
16. The three-dimensional islands consist of steps and possibly small angle facets along the (110) orientation so that the step energies are the determining factor for the roughening. It is however not inconceivable that the “critical nucleus” is dominated by facet energies, as pointed out by Tersoff, Reference 17.Google Scholar
17.Tersoff, J., Phys. Rev. Lett. 74 (1995) p. 4962.CrossRefGoogle Scholar
18. For a good review, see Griffith, J.E. and Kochanski, G.P., CRC Rev. Solid State Mater. Sci. 16 (1990) p. 255.CrossRefGoogle Scholar
19.Chadi, D.J., Phys. Rev. Lett. 59 (1987) p. 1691.CrossRefGoogle Scholar
20.Xie, Y.H., Gilmer, G.H., Roland, C., Silverman, P.J., Buratto, S.K., Cheng, J.Y., Fitzgerald, E.A., Kortan, A.R., Schuppler, S., Marcus, M.A., and Citrin, P., Phys. Rev. Lett. 74 (1995) p. 4963.CrossRefGoogle Scholar
21.Poon, T.W., Yip, S., Ho, P.S., and Abraham, F., Phys. Rev. Lett. 65 (1990) p. 2161.CrossRefGoogle Scholar
22.Alerhand, O.L., Vanderbilt, D., Meade, R., and Joannopolous, J.D., Phys. Rev. Lett. 61 (1988) p. 1973.CrossRefGoogle Scholar
23.Stillinger, F. and Weber, T., Phys. Rev. B 31 (1985) p. 5262.CrossRefGoogle Scholar
24.Roland, C. and Gilmer, G.H. (unpublished).Google Scholar
25.Jones, D.E., Pelz, J.P., Xie, Y.H., Silverman, P.J., and Gilmer, G.H., Phys. Rev. Lett. 75 (1995) p. 1570.CrossRefGoogle Scholar
26.Chen, K.M., Jesson, D.E., Pennycook, S.J., Mostoller, M., Kaplan, T., Thundat, T., and Warmack, R.J., Phys. Rev. Lett. 75 (1995) p. 1582.CrossRefGoogle Scholar