Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T13:26:17.274Z Has data issue: false hasContentIssue false

Dye-Sensitized Solid-State Heterojunction Solar Cells

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The dye-sensitized solar cell (DSSC) provides a technically and economically viable alternative concept to present-day p–n junction photovoltaic devices. In contrast to conventional silicon systems, where the semiconductor assumes both the task of light absorption and charge carrier transport, these two functions are separated in DSSCs. The use of sensitizers having a broad absorption band in conjunction with wide-bandgap semiconductor films of mesoporous or nanocrystalline morphology permits harvesting a large fraction of sunlight. There are good prospects that these devices can attain the conversion efficiency of liquid-electrolyte-based dye-sensitized solar cells, which currently stands at 11%. In this article, we present the current state of the field, the realm of our review being restricted to the discussion of organic molecular hole conductors, which have demonstrated the best performance to date.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.O'Regan, B. and Grätzel, M., Nature 335 (1991) p. 737.CrossRefGoogle Scholar
2.Hoppe, H. and Sariciftci, N.S., J. Mater. Res. 19 (2004) p. 1924.Google Scholar
3.Grätzel, M., Nature 414 (2001) p. 338.CrossRefGoogle Scholar
4.Hagfeldt, A. and Grätzel, M., Acc. Chem. Res. 33 (2000) p. 269.Google Scholar
5.Halls, J.J.M., Pickler, K., Friend, R.H., Morati, S.C., and Holmes, A.B., Nature 376 (1995) p. 498.CrossRefGoogle Scholar
6.O'Regan, B., Schwartz, D.T., Zakeeruddin, S.M., and Grätzel, M., Adv. Mater. 12 (2000) p. 1263.3.0.CO;2-T>CrossRefGoogle Scholar
7.Burnside, S.D., Shklover, V., Barbé, Ch., Comte, P., Arendse, F., Brooks, K., and Grätzel, M., Chem. Mater. 10 (1998) p. 2419.CrossRefGoogle Scholar
8.Bässler, H.Phys. Status Solidi B 175 (1993) p. 15.Google Scholar
9.Poplavsky, D., and Nelson, J., J. Appl. Phys. 12 (2003) p. 341.CrossRefGoogle Scholar
10.Nazeeruddin, M.K., Kay, A., Rodicio, I., Humphry-Baker, R., Müller, E., Liska, P., Vlachopoulos, N., and Grätzel, M., J. Am. Chem. Soc. 115 (1993) p. 6382.Google Scholar
11.Benko, G., Kallioinen, J., Korppi-Tommola, J.E.I., Yartsev, A.P., and Sundstrom, V.J., J. Am. Chem. Soc. 124 (2002) p. 489.CrossRefGoogle Scholar
12.Wang, P., Zakeeruddin, S.M., Moser, J.E., Nazeeruddin, M.K., Sekiguchi, T., and Grätzel, M., Nature Mater. 2 (2003) p. 402.CrossRefGoogle Scholar
13.Kruger, J., Plass, R., Gratzel, M., Cameron, P.J., and Peter, L.M., Phys. Chem. B 107 (2003) p. 7536.Google Scholar
14.Bach, U., Tachibana, Y., Moser, J.-E., Haque, S.A., Durrant, J.R., Grätzel, M., and Klug, D.R., J. Am. Chem. Soc. 121 (1999) p. 7445.Google Scholar
15.Krüger, J., Plass, R., Cevey, L., Piccirelli, M., and Grätzel, M., Appl. Phys. Lett. 79 (2001) p. 2085.CrossRefGoogle Scholar
16.Bach, U., Lupo, D., Comte, P., Moser, J.-E., Weissörtel, F., Salbeck, J., Spreitzer, H., and Grätzel, M., Nature 395 (1998) p. 583.Google Scholar
17.Schmidt-Mende, L., Zakeeruddin, S.M., and Grätzel, M., Appl. Phys. Lett. in press.Google Scholar