Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T12:46:43.678Z Has data issue: false hasContentIssue false

Dislocation Mechanisms of Relaxation in Strained Epitaxial Films

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Advances in the methods of deposition and characterization of crystalline films of submicron thickness have been dramatic over the past two decades. A principal motivation for development of this technology has been the potential for use of thin film semiconductor materials in electronic and optoelectronic devices. The main function of these devices is to control transport of electrons in a way which permits high spatial density, and in which the carriers are highly mobile, that is, they show fast response with little power consumption. Spatial control of mobile electrons can be facilitated by combining materials, forming a material heterostructure, with one or more of these materials being a thin film. Carrier confinement is enforced by a difference in energy band structure across the interface acting as a barrier. The exploitation of this physical effect in device design is called bandgap engineering. A great deal of attention has been focused on film/substrate systems involving the III-V compounds (InGaAs/GaAs, for example), as well as on II-VI compounds for optical applications (ZnSe/GaAs, for example). Current efforts are also directed toward SiGe/Si and GaAs/Si systems to exploit well-developed silicon device technology.

Type
Mechanical Behavior of Thin Films
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bean, J.C., Science 230 (1985) p. 127.CrossRefGoogle Scholar
2.Dodson, B.W. and Taylor, P.A., Appl. Phys. Lett. 49 (1986) p. 642.CrossRefGoogle Scholar
3.Matthews, J.W., Mader, S., and Light, T.B., J. Appl. Phys. 41 (1970) p. 3800.CrossRefGoogle Scholar
4.Freund, L.B., J. Appl. Mech. 54 (1987) p. 553.CrossRefGoogle Scholar
5.Freund, L.B., J. Mech. Phys. Sol. 38 (1990) p. 657.CrossRefGoogle Scholar
6.Houghton, D.C., J. Appl. Phys. 70 (1991) p. 2136.CrossRefGoogle Scholar
7.Tuppen, C.G., Gibbings, C.J., and Hockly, M., J. Cryst. Growth 94 (1989) p. 392.CrossRefGoogle Scholar
8.Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 27 (1974) p. 118; 29 (1975) p. 273; 32 (1976) p. 265.Google Scholar
9.Fritz, I.J., Appl. Phys. Lett. 51 (1987) p. 1080.CrossRefGoogle Scholar
10.Gourley, P.L., Fritz, I.J., and Dawson, L.R., Appl. Phys. Lett. 52 (1988) p. 377.CrossRefGoogle Scholar
11.Matthews, J.W., J. Vac. Sci. Technol. 12 (1975) p. 126.CrossRefGoogle Scholar
12.Cammarata, R.C. and Sieradzki, K., Appl. Phys. Lett. 55 (1989) p. 1197.CrossRefGoogle Scholar
13.Alexander, H., in Dislocations in Solids 7, edited by Nabarro, F.R.N. (Elsevier, Amsterdam, 1986) p. 115234.Google Scholar
14.Houghton, D.C., Perovic, D.D., Baribeau, J-M., and Weatherly, G.C., J. Appl. Phys. 67 (1990) p. 1850.CrossRefGoogle Scholar
15.Nix, W.D., Noble, D.B., and Turlo, J.F., in Thin Films: Stresses and Mechanical Properties II, edited by Doerner, M.F., Oliver, W.C., Pharr, G.M., and Brotzen, F.R. (Mater Res. Soc. Symp. Proc. 188, Pittsburgh, PA, 1990) p. 315330.Google Scholar
16.Freund, L.B., Bower, A., and Ramirez, J.C., in Thin Films: Stresses and Mechanical Properties, edited by Bravman, J., Nix, W.D., Barnett, D.M., and Smith, D.A. (Mater Res. Soc. Symp. Proc. 130, Pittsburgh, PA, 1989) p. 139152.Google Scholar
17.LeGoues, F.K., Meyerson, B.S., and Morar, J.F., Phys. Rev. Lett. 63 (1989) p. 1826.CrossRefGoogle Scholar
18.Paine, D.C., Howard, D.J., and Stoffel, N.G., J. Electron. Mat. 20 (1991) p. 735.CrossRefGoogle Scholar
19.van der Merwe, J.H. and van der Berg, N.G., Surf. Sci. 32 (1972) p. 1.CrossRefGoogle Scholar
20.van der Merwe, J.H., J. Electron. Mat. 20 (1991) p. 793.CrossRefGoogle Scholar
21.Jesser, W.A. and van der Merwe, J.H., J. Appl. Phys. 63 (1988) p. 1509; J. Appl. Phys. 63 (1988) p. 1928.CrossRefGoogle Scholar
22.Fitzgerald, E.A., Watson, G.P., Proano, R.E., Ast, D.B., Kirchner, P.D., Pettit, G.D., and Woodall, J.M., J. Appl. Phys. 65 (1989) p. 2220.CrossRefGoogle Scholar
23.Frank, F.C. and van der Merwe, J.H., Proc. R. Soc. London, Ser. A 198 (1949) p. 205; F.C. Frank and J.H. van der Merwe, Proc. R. Soc. London, Ser. A 198 (1949), p. 216.Google Scholar
24.Nix, W.D., Met. Trans. 20A (1989) p. 2217.CrossRefGoogle Scholar
25.Paine, D.C., Howard, D.J., Luo, D., Sacks, R.N., and Eschrich, T.C., in Layered Structures—Heteroepitaxy, Superlattices, Strain and Metastability, edited by Dodson, B.W., Schowalter, L.J., Cunningham, J.E., and Pollak, F.H., (Mater. Res. Soc. Symp. Proc. 160, Pittsburgh, PA, 1990), p. 123128.Google Scholar
26.Petrozullo, J., Greenberg, B.L., Cammack, D.A., and Dalby, R., J. Appl. Phys. 63 (1988) p. 2299.CrossRefGoogle Scholar
27.Willis, J.R., Jain, S.C., and Bullough, R., Philos. Mag. A62 (1990) p. 115; Appl. Phys. Lett. 59 (1991) p. 920.CrossRefGoogle Scholar
28.Hirth, J.P. and Feng, X., J. Appl. Phys. 67 (1990) p. 3343.CrossRefGoogle Scholar
29.Freund, L.B., J. Appl. Phys. 68 (1990) p. 2073.CrossRefGoogle Scholar
30.Hull, R., Bean, J.C., Werder, D.J., and Leibenguth, R.E., Phys. Rev. B 40 (1989) p. 1681.CrossRefGoogle Scholar
31.Bean, J.C., Feldman, L.C., Fiory, A.T., Nakahara, S., and Robinson, I.K., J. Vac. Sci. Technol. A 2 (1984) p. 436.CrossRefGoogle Scholar
32.Fiory, A.T., Bean, J.C., Hull, R., and Nakahara, S., Phys. Rev. B 31 (1984) p. 4063.CrossRefGoogle Scholar
33.Tsao, J.Y. and Dodson, B.W., Appl. Phys. Lett. 53 (1988) p. 848.CrossRefGoogle Scholar
34.Tsao, J.Y., Dodson, B.W., Picraux, S.T., and Cornelison, D.M., Phys. Rev. Lett. 59 (1987) p. 2455.CrossRefGoogle Scholar
35.Freund, L.B. and Hull, R., J. Appl. Phys. 71 (1992).CrossRefGoogle Scholar
36.Tuppen, C.G. and Gibbings, C.J., J. Appl. Phys. 68 (1990) p. 1526.CrossRefGoogle Scholar
37.Hull, R., Bean, J.C., Bahnck, D., Peticolas, L.J., Short, K.T., and Unterwald, F.C., J. Appl. Phys. 70 (1991) p. 2052.CrossRefGoogle Scholar
38.Dodson, B.W. and Tsao, J.Y., Appl. Phys. Lett. 51 (1987) p. 1325.CrossRefGoogle Scholar
39.Rice, J.R., J. Appl. Mech. 37 (1970) p. 728.CrossRefGoogle Scholar
40.Kamat, S.V. and Hirth, J.P., J. Appl. Phys. 67 (1990) p. 6844.CrossRefGoogle Scholar
41.Perovic, D.D., Weatherly, G.C., Baribeau, J-M., and Houghton, D.C., Thin Solid Films 183 (1989) p. 141.CrossRefGoogle Scholar
42.Eaglesham, D.J., Kvam, E.P., Maher, D.M., Humphreys, C.J., and Bean, J.C., Philos. Mag. A59 (1989) p. 1059.CrossRefGoogle Scholar
43.Hu, S.M., J. Appl. Phys. 50 (1979) p. 4661.CrossRefGoogle Scholar
44.Luo, D., Howard, D.J., and Paine, D.C., in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W.D., Bravman, J.C., Arzt, E., and Freund, L.B. (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992).Google Scholar
45.Hsing, I-H., Lishan, D., Mirin, R., Jayaraman, V., Yasuda, T., Hu, E.L., and Bowers, J., Appl. Phys. Lett. 59 (1991) p. 1875.Google Scholar
46.Srolovitz, D.J., Acta Metall. 37 (1989) p. 621.CrossRefGoogle Scholar
47.Spencer, B.J., Voorhees, P.W., and Davis, S.H., Phys. Rev. Lett. 67 (1991) p. 3696.CrossRefGoogle Scholar
48.LeGoues, F.K., Copel, M., and Trump, R., Phys. Ren Lett. 63 (1989) p. 1826.CrossRefGoogle Scholar
49.Iyer, S.S. and LeGoues, F.K., J. Appl. Phys. 65 (1989) p. 4693.CrossRefGoogle Scholar