Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T08:37:36.413Z Has data issue: false hasContentIssue false

Developments in characterizing soft matter

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Soft matter—also known as complex fluids—is a field of growing interest and importance, spanning many classes of materials, including polymers, biopolymers, colloids, and liquid crystals. Different approaches for microstructural characterization are more appropriate than those used for hard (and usually fully crystallized) materials such as metals and inorganic materials because of the time and length scales involved. This article discusses a range of techniques applicable to the characterization of soft matter, including environmental scanning electron microscopy (SEM) and microrheology. The former offers two key advantages for this class of material over conventional SEM because it requires neither a high vacuum—which is a problem for hydrated samples—nor that an insulator be coated with a conductive material. Microrheology is well suited to small volumes of fluid with low moduli that may be heterogeneous; it is capable of measuring gelation in real time.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Jones, R.A.L., Soft Machines (OUP, New York, 2004).CrossRefGoogle Scholar
2.Jenkins, L., Donald, A.M., Scanning 19, 92 (1997).CrossRefGoogle Scholar
3.Meredith, P., Donald, A.M., Meller, N., Hall, C., J. Mater. Sci. 39, 997 (2003).CrossRefGoogle Scholar
4.Keddie, J., Meredith, P., Jones, R., Donald, A., Langmuir 12, 3793 (1996).CrossRefGoogle Scholar
5.Dragnevski, K.I., Donald, A.A., Prog. Org. Coat. 61, 63 (2008).CrossRefGoogle Scholar
6.Danilatos, G.D., J. Microsc. 162, 391 (1990).CrossRefGoogle Scholar
7.Danilatos, G.D., Adv. Electron. Electron Phys. 71, 109 (1988).CrossRefGoogle Scholar
8.Donald, A., Nat. Mater. 2, 51 (2003).CrossRefGoogle Scholar
9.Stokes, D.J., Rea, S.M., Best, S., Bonfield, W., Scanning 25, 181 (2003).CrossRefGoogle Scholar
10.Muscariello, L., Rosso, F., Marino, G., Giordano, A., Barbarasi, M., Cafiero, G., Barbarisi, A., J. Cell. Physiol. 205, 328 (2005).CrossRefGoogle Scholar
11.Sorbo, S., Basile, A., Cobianchi, R.C., Plant Biosyst. 142, 355 (2008).CrossRefGoogle Scholar
12.Iliescu, M., Hoemann, C.D., Shive, M.S., Chenite, A., Buschmann, M.D., Microsc. Res. Tech. 71, 236 (2008).CrossRefGoogle Scholar
13.Muscariello, L., Rosso, F., Marino, G., Barbarisi, M., Cafiero, G., Barbarisi, A., J. Cell. Physiol. 214, 769 (2008).CrossRefGoogle Scholar
14.Kirk, S., Skepper, J., Donald, A.M., J. Microsc. (Oxford) 233, 205 (2009).CrossRefGoogle Scholar
15.Zheng, T., Waldron, K.W., Donald, A.M., Planta 230, 1105 (2009).CrossRefGoogle Scholar
16.Pathan, A.K., Bond, J., Gaskin, R.E., Micron 39, 1049 (2008).CrossRefGoogle Scholar
17.Bensalem-Fnayou, A., Jellouli, N., Bouamama, B., Mliki, A., Ghorbel, A., Scanning 31, 127 (2009).CrossRefGoogle ScholarPubMed
18.Koch, K., Blecher, I.C., Koenig, G., Kehraus, S., Barthlott, W., Funct. Plant Biol. 36, 339 (2009).CrossRefGoogle Scholar
19.Zheng, Y.M., Han, D., Zhai, J., Jiang, L., Appl. Phys. Lett. 92 (2008).Google Scholar
20.Kolb, D., Muller, M., Ann. Bot. 94, 515 (2004).CrossRefGoogle Scholar
21.Thiel, B.L., Donald, A.M., Ann. Bot. 82, 727 (1998).CrossRefGoogle Scholar
22.Donald, A., Baker, F., Smith, A., Waldron, K., Ann. Bot. 92, 73 (2003).CrossRefGoogle Scholar
23.Eder, M., Stanzl-Tschegg, S., Burgert, I., Wood Sci. Technol. 42, 679 (2008).CrossRefGoogle Scholar
24.Patterson, D.A., Havill, A., Costello, S., See-Toh, Y.H., Livingston, A.G., Turner, A., Sep. Purif. Technol. 66, 90 (2009).CrossRefGoogle Scholar
25.Li, Y.K., Xu, T.W., Ouyang, Z.Y., Lin, X.C., Liu, H.L., Hao, Z.Y., Yang, P.L., J. Appl. Polym. Sci. 113, 3510 (2009).Google Scholar
26.Wang, J., Dismer, F., Hubbuch, J., Ulbricht, M., J. Memb. Sci. 320, 456 (2008).CrossRefGoogle Scholar
27.Bajpai, A.K., Mishra, D.D., J. Appl. Polym. Sci. 107, 541 (2008).CrossRefGoogle Scholar
28.Wei, Y.P., Cheng, F., Carbohydr. Polym. 68, 734 (2007).CrossRefGoogle Scholar
29.Hao, X.F., Zhang, X.Q., Mater. Lett. 61, 1319 (2007).CrossRefGoogle Scholar
30.Stokes, D.J., Thiel, B.L., Donald, A.M., Langmuir 14, 4402 (1998).CrossRefGoogle Scholar
31.Franz, N., Ahlers, M.O., Abdullah, A., Hohenberg, H., J. Mater. Sci. 41, 4561 (2006).CrossRefGoogle Scholar
32.Toth, M., Knowles, W.R., Thiel, B.L., Appl. Phys. Lett. 88 (2006).CrossRefGoogle Scholar
33.Stokes, D.J., Philos. Trans. R. Soc. London, Ser. A 361, 2771 (2003).CrossRefGoogle Scholar
34.Williams, S.J., Donald, A.M., Thiel, B.L., Morrison, D.E., Scanning 27, 190 (2005).CrossRefGoogle Scholar
35.Thiel, B.L., Int. Mater. Rev. 49, 109 (2004).CrossRefGoogle Scholar
36.Waigh, T., Rep. Prog. Phys. 68, 685 (2005).CrossRefGoogle Scholar
37.Mason, T.G., Weitz, D.A., Phys. Rev. Lett. 74, 1250 (1995).CrossRefGoogle Scholar
38.Oppong, F.K., Rubatat, L., Frisken, B.J., Bailey, A.E., de Bruyn, J.R., Phys. Rev. E 73, 041405 (2006).CrossRefGoogle Scholar
39.Gardel, M.L., Valentine, M.T., Crocker, J.C., Bausch, A.R., Weitz, D.A., Phys. Rev. Lett. 91, 158302 (2003).CrossRefGoogle Scholar
40.Gardel, M.L., Shin, J.H., MacKintosh, F.C., Mahadevan, L., Matsudaira, P., Weitz, D.A., Phys. Rev. Lett. 93, 188102 (2004).CrossRefGoogle Scholar
41.Houghton, H.A., Hasnain, I.A., Donald, A.M., Eur. Phys. J. E 25, 119 (2008).CrossRefGoogle Scholar
42.Larsen, T.H., Furst, E.M., Phys. Rev. Lett. 100, 146001 (2008).CrossRefGoogle Scholar
43.Ferry, J.D., Viscoelastic Properties of Polymers 3rd ed. (New York, Wiley, 1980).Google Scholar
44.Corrigan, A.M., Donald, A.M., Eur. Phys. J. E 28, 457 (2009).CrossRefGoogle Scholar
45.Crocker, J., Valentine, M., Weeks, E., Gisler, T., Kaplan, P., Yodh, A., Weitz, D., Phys. Rev. Lett. 85, 888 (2000).CrossRefGoogle Scholar
46.Valentine, M., Kaplan, P., Thota, D., Crocker, J., Gisler, T., Prud'homme, R., Beck, M., Weitz, D., Phys. Rev. E 64, 061506 (2001).CrossRefGoogle Scholar
47.Heidemann, S.R., Wirtz, D., Trends Cell Biol. 14, 160 (2004).CrossRefGoogle Scholar
48.Tseng, Y., Lee, J.S.H., Kole, T.P., Jiang, I., Wirtz, D., J. Cell. Sci. 110, 2159 (2004).CrossRefGoogle Scholar
49.Panorchan, P., Lee, J.S.H., Kole, T.P., Tseng, Y., Wirtz, D., Biophys. J. 91, 3499 (2006).CrossRefGoogle Scholar
50.Wirtz, D., Annu. Rev. Biophys. 38, 301 (2009).CrossRefGoogle Scholar
51.Daniels, B.R., Masi, B.C., Wirtz, D., Biophys. J. 90, 4712 (2006).CrossRefGoogle Scholar
52.Baker, E.L., Bonnecaze, R.T., Zamao, M.H., Biophys. J. 97, 1013 (2009).CrossRefGoogle Scholar
53.Picard, C., Donald, A., Eur. Phys. J.E 30, 127 (2009).CrossRefGoogle Scholar
54.Yoon, Y.Z., Kotar, J., Yoon, G., Cicuta, P., Phys. Biol. 5, 8 (2008).CrossRefGoogle Scholar
55.Yao, A., Tassieri, M., Padgett, M., Cooper, J., Lab Chip 9, 2568 (2009).CrossRefGoogle Scholar
56.Penfold, J., Schurtenberger, P., Curr. Opin. Colloid Interface Sci. 14, 379 (2009).CrossRefGoogle Scholar
57.Ogawa, H., Kanaya, T., Nishida, K., Matsuba, G., Majewski, J.P., Watkins, E., J. Chem. Phys. 131 (2009).CrossRefGoogle Scholar
58.de Silva, J.P., Martin, S.J., Cubitt, R., Geoghegan, M., Europhys. Lett. 86 (2009).CrossRefGoogle Scholar
59.Pechkova, E., Tripathi, S., Nicolini, C., J. Synchrotron Radiat. 16, 330 (2009).CrossRefGoogle Scholar
60.Bras, W., Derbyshire, G.E., Ryan, A.J., Mant, G.R., Belton, F., Lewis, R.A., Hall, C.J., Greaves, G.M., Nucl. Instrum. Methods Phys. Res. A 326, 587 (1993).CrossRefGoogle Scholar
61.Bras, W., Dolbnya, I.P., Detollenaere, D., van Tol, R., Malfois, M., Greaves, G.N., Ryan, A.J., Heeley, E., J. Appl. Crystallogr. 36, 791 (2003).CrossRefGoogle Scholar
62.Donald, A.M., Waigh, T.A., Jenkins, P.J., Gidley, M.J., Debet, M., Smith, A., in Starch Structure and Function, Frazier, P.J., Donald, A.M., Richmond, P., Eds. (London, RSC, 1997).Google Scholar
63.Mok, M.M., Pujari, S., Burghardt, W.R., Dettmer, C.M., Nguyen, S.T., Ellison, C.J., Torkelson, J.M., Macromolecules 41, 5818 (2008).CrossRefGoogle Scholar
64.Corvazier, L., Messe, L., Salou, C.L.O., Young, R.N., Fairclough, J.P.A., Ryan, A.J., J. Mater. Chem. 11, 2864 (2001).CrossRefGoogle Scholar
65.Ryan, A.J., in Structure Development During Polymer Processing, Cunha, A.M., Fakirov, S., Eds. (New York, Springer, 2000) pp. 6991.CrossRefGoogle Scholar
66.Benoit, H., Decker, D., Higgins, J.S., Picot, C., Cotton, J.P., Farnoux, B., Jannink, G., Ober, R., Nat. Phys. Sci. 245, 13 (1973).CrossRefGoogle Scholar
67.Magid, L.J., Schurtenberger, R., MRS Bull. 28, 907 (2003).CrossRefGoogle Scholar
68.Taylor, D.J.F., Thomas, R.K., Penfold, J., Adv. Colloid Interface Sci. 132, 69 (2007).CrossRefGoogle Scholar
69.Penfold, J., Curr. Opin. Colloid Interface Sci. 7, 139 (2002).CrossRefGoogle Scholar
70.Graham, R.S., Bent, J., Clarke, N., Hutchings, L.R., Richards, R.W., Gough, T., Hoyle, D.M., Harlen, O.G., Grillo, I., Auhl, D., McLeish, T.C.B., Soft Matter 5, 2383 (2009).CrossRefGoogle Scholar
71.Coote, M.L., Gordon, D.H., Hutchings, L.R., Richards, R.W., Dalgliesh, R.M., Polymer 44, 7689 (2003).CrossRefGoogle Scholar