Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T02:58:53.191Z Has data issue: false hasContentIssue false

Converting light to electrons in oriented nanotube arrays used in sensitized solar cells

Published online by Cambridge University Press:  10 June 2011

Kai Zhu
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, USA; [email protected]
Arthur J. Frank
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, USA; [email protected]
Get access

Abstract

Well-ordered arrays of one-dimensional semiconductors, such as titania nanotubes (NTs), have attracted attention as a promising new film architecture for dye- and semiconductor-sensitized solar cells. The film architecture in sensitized solar cells combines light absorption, charge injection, and charge-carrier transport to generate electrical power and is, therefore, a key component in determining the photoconversion efficiency of a cell. Because of the arrays’ distinct combination of physical, electrical, and optical properties, the conversion efficiencies of TiO2 NT-based devices are rapidly catching up with those of the traditional nanoparticle-based cells. In this article, we briefly review the fabrication and morphology of the NT arrays and discuss the strong influence that the film architecture and individual NT structure exert on the light-harvesting and charge-collection properties of sensitized solar cells. Besides affecting the solar conversion efficiency, the morphological and electrical properties of the arrays also impact the cell fabrication process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.O’Regan, B., Grätzel, M., Nature 353, 737 (1991).CrossRefGoogle Scholar
2.Robel, I., Subramanian, V., Kuno, M., Kamat, P.V., J. Am. Chem. Soc. 128, 2385 (2006).CrossRefGoogle Scholar
3.Levy-Clement, C., Tena-Zaera, R., Ryan, M.A., Katty, A., Hodes, G., Adv. Mater. 17, 1512 (2005).CrossRefGoogle Scholar
4.Kaiser, I., Ernst, K., Fischer, C.H., Konenkamp, R., Rost, C., Sieber, I., Lux-Steiner, M.C., Sol. Energy Mater. Sol. Cells 67, 89 (2001).CrossRefGoogle Scholar
5.Wang, Q., Zhu, K., Neale, N.R., Frank, A.J., Nano Lett. 9, 806 (2009).CrossRefGoogle Scholar
6.Wu, W.B., Jin, Z.G., Hu, G.D., Bu, S.J.. Electrochim. Acta 52, 4804 (2007).CrossRefGoogle Scholar
7.Grätzel, M., J. Photochem. Photobiol. A-Chem. 164, 3 (2004).CrossRefGoogle Scholar
8.Chiba, Y., Islam, A., Watanabe, Y., Komiya, R., Koide, N., Han, L.Y., Jpn. J. Appl. Phys. Part 2—Lett. Express Lett. 45, L638 (2006).CrossRefGoogle Scholar
9.van de Lagemaat, J., Frank, A.J., J. Phys. Chem. B 105, 11194 (2001).CrossRefGoogle Scholar
10.Zhu, K., Kopidakis, N., Neale, N.R., van de Lagemaat, J., Frank, A.J., J. Phys. Chem. B 110, 25174 (2006).CrossRefGoogle Scholar
11.Frank, A.J., Kopidakis, N., van de Lagemaat, J., Coord. Chem. Rev. 248, 1165 (2004).CrossRefGoogle Scholar
12.Macak, J.M., Tsuchiya, H., Ghicov, A., Schmuki, P., Electrochem. Commun. 7, 1133 (2005).CrossRefGoogle Scholar
13.Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., Grimes, C.A., Nano Lett. 6, 215 (2006).CrossRefGoogle Scholar
14.Zhu, K., Neale, N.R., Miedaner, A., Frank, A.J., Nano Lett. 7, 69 (2007).CrossRefGoogle Scholar
15.Jennings, J.R., Ghicov, A., Peter, L.M., Schmuki, P., Walker, A.B., J. Am. Chem. Soc. 130, 13364 (2008).CrossRefGoogle Scholar
16.Kuang, D., Brillet, J., Chen, P., Takata, M., Uchida, S., Miura, H., Sumioka, K., Zakeeruddin, S.M., Grätzel, M., Acs Nano 2, 1113 (2008).CrossRefGoogle Scholar
17.Law, M., Greene, L.E., Johnson, J.C., Saykally, R., Yang, P.D., Nat. Mater. 4, 455 (2005).CrossRefGoogle Scholar
18.Baxter, J.B., Aydil, E.S., Appl. Phys. Lett. 86, 053114 (2005).CrossRefGoogle Scholar
19.Galoppini, E., Rochford, J., Chen, H.H., Saraf, G., Lu, Y.C., Hagfeldt, A., Boschloo, G., J. Phys. Chem. B 110, 16159 (2006).CrossRefGoogle Scholar
20.Martinson, A.B.F., McGarrah, J.E., Parpia, M.O.K., Hupp, J.T., Phys. Chem. Chem. Phys. 8, 4655 (2006).CrossRefGoogle Scholar
21.Feng, X.J., Shankar, K., Varghese, O.K., Paulose, M., Latempa, T.J., Grimes, C.A., Nano Lett. 8, 3781 (2008).CrossRefGoogle Scholar
22.Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., Grimes, C.A., Sol. Energy Mater. Sol. Cells 90, 2011 (2006).CrossRefGoogle Scholar
23.Macak, J.M., Tsuchiya, H., Ghicov, A., Yasuda, K., Hahn, R., Bauer, S., Schmuki, P., Curr. Opin. Solid State Mat. Sci. 11, 3 (2007).CrossRefGoogle Scholar
24.Zhu, K., Vinzant, T.B., Neale, N.R., Frank, A.J., Nano Lett. 7, 3739 (2007).CrossRefGoogle Scholar
25.Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., Grimes, C.A., Appl. Phys. Lett. 91, 3 (2007).CrossRefGoogle Scholar
26.Gong, D., Grimes, C.A., Varghese, O.K., Hu, W.C., Singh, R.S., Chen, Z., Dickey, E.C., J. Mater. Res. 16, 3331 (2001).CrossRefGoogle Scholar
27.Beranek, R., Hildebrand, H., Schmuki, P., Electrochem. Solid State Lett. 6, B12 (2003).CrossRefGoogle Scholar
28.Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Niihara, K., Langmuir 14, 3160 (1998).CrossRefGoogle Scholar
29.Chen, Q., Zhou, W.Z., Du, G.H., Peng, L.M., Adv. Mater. 14, 1208 (2002).3.0.CO;2-0>CrossRefGoogle Scholar
30.Hoyer, P., Langmuir 12, 1411 (1996).CrossRefGoogle Scholar
31.Sander, M.S., Cote, M.J., Gu, W., Kile, B.M., Tripp, C.P., Adv. Mater. 16, 2052 (2004).CrossRefGoogle Scholar
32.Cai, Q.Y., Paulose, M., Varghese, O.K., Grimes, C.A., J. Mater. Res. 20, 230 (2005).CrossRefGoogle Scholar
33.Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., Grimes, C.A., Nano Lett. 5, 191 (2005).CrossRefGoogle Scholar
34.Paulose, M., Shankar, K., Yoriya, S., Prakasam, H.E., Varghese, O.K., Mor, G.K., Latempa, T.A., Fitzgerald, A., Grimes, C.A., J. Phys. Chem. B 110, 16179 (2006).CrossRefGoogle Scholar
35.Zwilling, V., Darque-Ceretti, E., Boutry-Forveille, A., David, D., Perrin, M.Y., Aucouturier, M., Surf. Interface Anal. 27, 629 (1999).3.0.CO;2-0>CrossRefGoogle Scholar
36.Prakasam, H.E., Shankar, K., Paulose, M., Varghese, O.K., Grimes, C.A., J. Phys. Chem. C 111, 7235 (2007).CrossRefGoogle Scholar
37.Ghicov, A., Schmuki, P., Chem. Commun. 2791 (2009).Google Scholar
38.Shankar, K., Mor, G.K., Fitzgerald, A., Grimes, C.A., J. Phys. Chem. C 111, 21 (2007).CrossRefGoogle Scholar
39.Shankar, K., Mor, G.K., Prakasam, H.E., Yoriya, S., Paulose, M., Varghese, O.K., Grimes, C.A., Nanotechnology 18,11 (2007).CrossRefGoogle Scholar
40.Paulose, M., Prakasam, H.E., Varghese, O.K., Peng, L., Popat, K.C., Mor, G.K., Desai, T.A., Grimes, C.A., J. Phys. Chem. C 111, 14992 (2007).CrossRefGoogle Scholar
41.Berger, S., Tsuchiya, H., Schmuki, P., Chem. Mat. 20, 3245 (2008).CrossRefGoogle Scholar
42.Bright, E., Readey, D.W., J. Am. Ceram. Soc. 70, 900 (1987).CrossRefGoogle Scholar
43.Kim, J.Y., Noh, J.H., Zhu, K., Halverson, A.F., Neale, N.R., Park, S., Hong, K.S., Frank, A.J., ACS Nano. 5, 2647 (2011).CrossRefGoogle Scholar
44.Macak, J.M., Tsuchiya, H., Schmuki, P., Angew. Chem.-Int. Edit. 44, 2100 (2005).CrossRefGoogle Scholar
45.Su, Z.X., Zhou, W.Z., J. Mater. Chem. 19, 2301 (2009).CrossRefGoogle Scholar
46.Bhargava, Y.V., Nguyen, Q.A.S., Devine, T.M., J. Electrochem. Soc. 156, E62 (2009).CrossRefGoogle Scholar
47.Bauer, S., Kleber, S., Schmuki, P., Electrochem. Commun. 8, 1321 (2006).CrossRefGoogle Scholar
48.Lai, Y.K., Sun, L., Chen, Y.C., Zhuang, H.F., Lin, C.J., Chin, J.W., J. Electrochem. Soc. 153, D123 (2006).CrossRefGoogle Scholar
49.Xie, Z.B., Adams, S., Blackwood, D.J., Wang, J., Nanotechnology 19, 6 (2008).Google Scholar
50.Chen, C.C., Chung, H.W., Chen, C.H., Lu, H.P., Lan, C.M., Chen, S.F., Luo, L., Hung, C.S., Diau, E.W.G., J. Phys. Chem. C 112, 19151 (2008).CrossRefGoogle Scholar
51.Ghicov, A., Tsuchiya, H., Macak, J.M., Schmuki, P., Electrochem. Commun. 7, 505 (2005).CrossRefGoogle Scholar
52.Shankar, K., Basham, J.I., Allam, N.K., Varghese, O.K., Mor, G.K., Feng, X.J., Paulose, M., Seabold, J.A., Choi, K.S., Grimes, C.A., J. Phys. Chem. C 113, 6327 (2009).CrossRefGoogle Scholar
53.Nazeeruddin, M.K., Kay, A., Rodicio, I., Humphrybaker, R., Muller, E., Liska, P., Vlachopoulos, N., Grätzel, M., J. Am. Chem. Soc. 115, 6382 (1993).CrossRefGoogle Scholar
54.Lin, C.J., Yu, W., Chien, S.H., J. Mater. Chem. 20, 1073 (2010).CrossRefGoogle Scholar
55.Wang, J., Lin, Z.Q.. Chem. Mat. 22, 579 (2010).CrossRefGoogle Scholar
56.Yu, Q.J., Wang, Y.H., Yi, Z.H., Zu, N.N., Zhang, J., Zhang, M., Wang, P., ACS Nano 4, 6032 (2010).CrossRefGoogle Scholar
57.Cao, F., Oskam, G., Meyer, G.J., Searson, P.C., J. Phys. Chem. 100, 17021 (1996).CrossRefGoogle Scholar
58.de Jongh, P.E., Vanmaekelbergh, D., Phys. Rev. Lett. 77, 3427 (1996).CrossRefGoogle Scholar
59.Nelson, J., Haque, S.A., Klug, D.R., Durrant, J.R., Phys. Rev. B 63, 205321 (2001).CrossRefGoogle Scholar
60.Schlichthörl, G., Park, N.G.Frank, A.J., J. Phys. Chem. B 103, 782 (1999).CrossRefGoogle Scholar
61.Dloczik, L., Ileperuma, O., Lauermann, I., Peter, L.M., Ponomarev, E.A., Redmond, G., Shaw, N.J., Uhlendorf, I., J. Phys. Chem. B 101, 10281 (1997).CrossRefGoogle Scholar
62.Solbrand, A., Lindstrom, H., Rensmo, H., Hagfeldt, A., Lindquist, S.E., Sodergren, S., J. Phys. Chem. B 101, 2514 (1997).CrossRefGoogle Scholar
63.Bisquert, J., Vikhrenko, V.S., J. Phys. Chem. B 108, 2313 (2004).CrossRefGoogle Scholar
64.Richter, C., Schmuttenmaer, C.A., Nat. Nanotechnol. 5, 769 (2010).CrossRefGoogle Scholar
65.Fabregat-Santiago, F., Barea, E.M., Bisquert, J., Mor, G.K., Shankar, K., Grimes, C.A., J. Am. Chem. Soc. 130, 11312 (2008).CrossRefGoogle Scholar
66.Nakayama, K., Kubo, T., Nishikitani, Y., Jpn. J. Appl. Phys. 47, 6610 (2008).CrossRefGoogle Scholar
67.Likodimos, V., Stergiopoulos, T., Falaras, P., Kunze, J., Schmuki, P., J. Phys. Chem. C 112, 12687 (2008).CrossRefGoogle Scholar
68.Shin, Y., Lee, S., Nano Lett. 8, 3171 (2008).CrossRefGoogle Scholar
69.Kim, D., Ghicov, A., Schmuki, P., Electrochem. Commun. 10, 1835 (2008).CrossRefGoogle Scholar
70.Albu, S.P., Schmuki, P., Phys. Status Solidi-Rapid Res. Lett. 4, 151 (2010).CrossRefGoogle Scholar
71.Ruan, C.M., Paulose, M., Varghese, O.K., Mor, G.K., Grimes, C.A., J. Phys. Chem. B 109, 15754 (2005).CrossRefGoogle Scholar
72.Macak, J.M., Albu, S.P., Schmuki, P., Phys. Status Solidi-Rapid Res. Lett. 1, 181 (2007).CrossRefGoogle Scholar
73.Ghicov, A., Alba, S.P., Macak, J.M., Schmuki, P., Small 4, 1063 (2008).CrossRefGoogle Scholar
74.Varghese, O.K., Gong, D.W., Paulose, M., Grimes, C.A., Dickey, E.C., J. Mater. Res. 18, 156 (2003).CrossRefGoogle Scholar
75.Ghicov, A., Tsuchiya, H., Macak, J.M., Schmuki, P., Phys. Status Solidi A-Appl. Mat. 203, R28 (2006).Google Scholar
76.Wang, J., Zhao, L., Lin, V.S.Y., Lin, Z.Q., J. Mater. Chem. 19, 3682 (2009).CrossRefGoogle Scholar
77.Alivov, Y., Pandikunta, M., Nikishin, S., Fan, Z.Y.. Nanotechnology 20, 6 (2009).Google Scholar
78.Zhu, K., Neale, N.R., Halverson, A.F., Kim, J.Y., Frank, A.J., J. Phys. Chem. C 114, 13433 (2010).CrossRefGoogle Scholar
79.Martinson, A.B.F., Elam, J.W., Liu, J., Pellin, M.J., Marks, T.J., Hupp, J.T., Nano Lett. 8, 2862 (2008).CrossRefGoogle Scholar
80.Allam, N.K., Grimes, C.A., J. Phys. Chem. C 113, 7996 (2009).CrossRefGoogle Scholar
81.Allam, N.K., Shankar, K., Grimes, C.A., Adv. Mater. 20, 3942 (2008).CrossRefGoogle Scholar
82.Sun, W.T., Yu, Y., Pan, H.Y., Gao, X.F., Chen, Q., Peng, L.M., J. Am. Chem. Soc. 130, 1124 (2008).CrossRefGoogle Scholar
83.Banerjee, S., Mohapatra, S.K., Das, P.P., Misra, M., Chem. Mat. 20, 6784 (2008).CrossRefGoogle Scholar
84.Baker, D.R., Kamat, P.V., Adv. Funct. Mater. 19, 805 (2009).CrossRefGoogle Scholar
85.Shin, K., Il Seok, S., Im, S.H., Park, J.H.. Chem. Commun. 46, 2385 (2010).CrossRefGoogle Scholar
86.Kongkanand, A., Tvrdy, K., Takechi, K., Kuno, M., Kamat, P.V., J. Am. Chem. Soc. 130, 4007 (2008).CrossRefGoogle Scholar
87.Shen, Q., Yamada, A., Tamura, S., Toyoda, T., Appl. Phys. Lett. 97, 3 (2010).Google Scholar
88.Chen, S.G., Paulose, M., Ruan, C., Mor, G.K., Varghese, O.K., Kouzoudis, D., Grimes, C.A., J. Photochem. Photobiol. A-Chem. 177, 177 (2006).CrossRefGoogle Scholar
89.Gao, X.F., Li, H.B., Sun, W.T., Chen, Q., Tang, F.Q., Peng, L.M.. J. Phys. Chem. C 113 7531 (2009).CrossRefGoogle Scholar
90.Seabold, J.A., Shankar, K., Wilke, R.H.T., Paulose, M., Varghese, O.K., Grimes, C.A., Choi, K.S., Chem. Mat. 20, 5266 (2008).CrossRefGoogle Scholar
91.Moon, S.J., Itzhaik, Y., Yum, J.H., Zakeeruddin, S.M., Hodes, G., Grätzel, M., J. Phys. Chem. Lett. 1, 1524 (2010).CrossRefGoogle Scholar
92.Sarkar, S.K., Kim, J.Y., Goldstein, D.N., Neale, N.R., Zhu, K., Elliot, C.M., Frank, A.J., George, S.M., J. Phys. Chem. C 114, 8032 (2010).CrossRefGoogle Scholar
93.Nanu, M., Schoonman, J., Goossens, A., Adv. Mater. 16, 453 (2004).CrossRefGoogle Scholar
94.Nanu, M., Schoonman, J., Goossens, A., Nano Lett. 5, 1716 (2005).CrossRefGoogle Scholar
95.Macak, J.M., Gong, B.G., Hueppe, M., Schmuki, P., Adv. Mater. 19, 3027 (2007).CrossRefGoogle Scholar