Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T05:20:25.015Z Has data issue: false hasContentIssue false

Compatibility Challenges for High-ĸ Materials Integration into CMOS Technology

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

In addition to meeting the formidable challenges of replacing the nearly perfect SiO2 dielectric, a new dielectric ideally needs to replace SiO2 with minimal rearrangement of the complementary metal oxide semiconductor (CMOS) process flow. In this article, we outline the essential materials-integration issues that arise out of the technical requirements for minimizing changes to future process technologies. These include interfacial layer formation, film microstructure, deposition technologies, and electrical performance challenges such as trapped charge and the mobility degradation associated with any replacement material. Integration of the high-ĸ materials currently under consideration presents a significant challenge for materials scientists and engineers in industry and academia.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gusev, E.P., Copel, M., Cartier, E., Baumvol, I.J.R., Krug, C., and Gribelyuk, M.A., Appl. Phys. Lett. 76 (2000) p. 176.CrossRefGoogle Scholar
2.Busch, B.W., Kwo, J., Hong, M., Mannaerts, J.P., Sapjeta, B.J., Schulte, W.H., Garfunkel, E., and Gustafsson, T., Appl. Phys. Lett. 79 (2001) p. 2447.CrossRefGoogle Scholar
3.Copel, M., Gribelyuk, M., and Gusev, E.P., Appl. Phys. Lett. 76 (2000) p. 436.CrossRefGoogle Scholar
4.Qi, W.J., Nieh, R., Lee, B.H., Kang, L., Jeon, Y., and Lee, J.C., Appl. Phys. Lett. 77 (2000) p. 3269.CrossRefGoogle Scholar
5.Ma, T., Campbell, S.A., Smith, R., Hoilien, N., He, B., Gladfelter, W.L., Hobbs, C., Buchanan, D., Taylor, C., Gribelyuk, M., Tiner, M., Copel, M., and Lee, J.J., IEEE Trans. Electron Devices 48 (2001) p. 2348.Google Scholar
6.Guha, S., Cartier, E., Gribelyuk, M., Bojarczuk, N.A., and Copel, M., Appl. Phys. Lett. 77 (2000) p. 2710.CrossRefGoogle Scholar
7.Chambers, J.J. and Parsons, G.N., Appl. Phys. Lett. 77 (2000) p. 2385.CrossRefGoogle Scholar
8.Copel, M., Cartier, E., and Ross, F.M., Appl. Phys. Lett. 78 (2001) p. 1607.CrossRefGoogle Scholar
9.Maria, J.-P., Wicaksana, D., Kingon, A.I., Busch, B., Schulte, H., Garfunkel, E., and Gustafsson, T., J. Appl. Phys. 90 (2001) p. 3476.CrossRefGoogle Scholar
10.Copel, M., Cartier, E., Gusev, E., Guha, S., and Bojarczuk, N.A., Appl. Phys. Lett. 78 (2001) p. 2670.CrossRefGoogle Scholar
11.Kundu, M., Miyata, N., and Ichikawa, M., Appl. Phys. Lett. 78 (2001) p. 1517.CrossRefGoogle Scholar
12.Jeon, T.S., White, J.M., and Kwong, D.L., Appl. Phys. Lett. 78 (2001) p. 368.CrossRefGoogle Scholar
13.Gribelyuk, M.A., Callegari, S., Gusev, E., Copel, M., and Buchanan, D. (unpublished manuscript).Google Scholar
14.Park, D.G., Cho, H.J., Yeo, I.S., Roh, J.S., and Hwang, J.M., Appl. Phys. Lett. 77 (2000) p. 2207.CrossRefGoogle Scholar
15.Neumayer, D.A. and Cartier, E., J. Appl. Phys. 90 (2001) p. 1801.CrossRefGoogle Scholar
16.Manchanda, L., Green, M.L., Dover, R.B.v., Morris, M.D., Kerber, A., Hu, Y., Han, J.P., Silverman, P.J., Sorsch, T.W., Weber, G., Donnelly, V., Pelhos, K., Klemens, F., Ciampa, N.A., Kornblit, A., Kim, Y.O., Bower, J.E., Barr, D., Ferry, E., Jacobson, D., Eng, J., Busch, B., and Schulte, W.H., in IEDM Tech. Dig. (The Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2000) p. 23.Google Scholar
17.Wilk, G.D., Wallace, R.M., and Anthony, J.M., J. Appl. Phys. 87 (2000) p. 484.CrossRefGoogle Scholar
18.Dressendorfer, P.V., in Ionizing Radiation Effects in MOS Devices and Circuits, Chapter 6, edited by Ma, T.P. and Dressendorfer, P.V. (John Wiley & Sons, New York, 1989) p. 374.Google Scholar
19.DiMaria, D.J. and Stasiak, J.W., J. Appl. Phys. 65 (1989) p. 2342.CrossRefGoogle Scholar
20.Buchanan, D.A., DiMaria, D.J., Chang, C.A., and Taur, Y., Appl. Phys. Lett. 65 (1994) p. 1820.CrossRefGoogle Scholar
21.Ragnarsson, L.-Å., Guha, S., Bojarczuk, N.A., Cartier, E.A., Fischetti, M.V., Rim, K., and Karasinski, J., IEEE Electron Device Lett. 22 (2001) p. 490.CrossRefGoogle Scholar
22.Takagi, S.I., Toriumi, A., Iwase, M., and Tango, H., IEEE Trans. Electron Devices 41 (1994) p. 2357.CrossRefGoogle Scholar
23.Fischetti, M.V., Neumayer, D.A., and Cartier, E.A., J. Appl. Phys. 90 (2001) p. 4587.CrossRefGoogle Scholar