Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T03:33:41.108Z Has data issue: false hasContentIssue false

Challenges in Cosmetic Formulations: Appearance, Long Wear, and Comfort

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Cosmetics are products that are designed to maintain or improve visual appearance when applied to skin. Skin is a mechanically flexible substrate that changes in chemical and surface properties during the course of the day. Sebum (an oily substance secreted by the sebaceous glands) and perspiration (a secretion of mostly salt water by the eccrine glands) as well as environmental insults work counter to the desired benefits of cosmetics on physical appearance. Recent advances in the ability to control morphology and chemical properties have led to novel materials that in turn have enabled the development of cosmetics that provide, on the one hand, a more natural look, and on the other, unique and unprecedented visual effects. Progress in understanding skin biomechanics and surface properties lead to product formulations with unprecedented wear and performance characteristics. This article reviews recent advances in the ability to control the optical, bulk, and surface properties of materials, and their application to improved cosmetic formulations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Schlossman, M.C., Ed., The Chemistry and Manufacture of Cosmetics, Volume II: Formulating (Allured, Carol Stream, Ill., 2000) pp. 629, 707.Google Scholar
2.Ferrari, V., “Cosmetic composition containing a polymer and a fluoro oil,” U.S. Patent 7,052,681 (May 30, 2006).Google Scholar
3.Larrabee, W.F., Laryngoscope 96, 399 (1986).CrossRefGoogle Scholar
4.Morgan, F.R., J. Soc. Leather Trades Chem. 44, 171 (1960).Google Scholar
5.Carton, R.W, Dainauskas, J., Clark, J.W., J. Appl. Physiol. 17, 547 (May 1962).CrossRefGoogle Scholar
6.Daly, C.H., in Proc. 8th Int. Conf. Med. Biol. Eng. (1969) p. 18.Google Scholar
7.Dick, J.C., J. Physiol. 112, 102 (1951).CrossRefGoogle Scholar
8.Harkness, M.L.R., Harkness, R.D., Nature 183, 1821 (1959).CrossRefGoogle Scholar
9.Barbenel, J.C., Evans, J.H., J. Invest. Dermatol. 69, 318 (1977).CrossRefGoogle Scholar
10.Finlay, J.B., J. Biomech. 3, 557 (1970).CrossRefGoogle Scholar
11.Berardesca, E., Dermatologica 182, 89 (1991).CrossRefGoogle Scholar
12.Rodrigues, L., Skin Pharmacol. Appl. Skin Physiol. 14, 52 (2001).CrossRefGoogle Scholar
13.Diridollou, S., Skin Res. Technol. 6, 214 (2000).CrossRefGoogle Scholar
14.Delarie, J., in Muscle Adaptation in the Craniofacial Region, Carlson, D.S., McNamara, J.A., Eds. (University of Michigan Press, Ann Arbor, 1978) pp. 157180.Google Scholar
15.Fogel, M.L., Br. J. Plast. Surg. 37, 542 (1984).CrossRefGoogle Scholar
16.Leveque, J.L., Dermatology 208, 307 (2004).CrossRefGoogle Scholar
17.Weinstein, S., Isr. J. Dent. Sci. 2, 51 (1988).Google Scholar
18.Ho, T.P., J. Biomech. 115, 859 (1982).CrossRefGoogle Scholar
19.Park, A.C., J. Cosmet. Chem. 23, 3 (1972).Google Scholar
20.Duzee, B.F.V., J. Invest. Dermatol. 71, 140 (1978).CrossRefGoogle Scholar
21.Rigal, J.D., Bioeng. Skin 1, 1323 (1985).Google Scholar
22.Rudavsky, R., “Mechanical Properties of Human Stratum Corneum: Influence of pH Treatment,” in 2004 NNIN REU Research Accomplishments (Columbia University, New York, 2004) p. 106.Google Scholar
23.Zisman, W.A., “Contact Angle, Wettability, and Adhesion,” in Advances in Chemistry, Series 43 (American Chemical Society, Washington, D.C., 1964) p. 1.Google Scholar
24.Charkoudian, J.C., J. Soc. Cosmet. Chem. 39, 225 (1988).Google Scholar
25.Elkhyat, A., Agache, P., Zahouani, H., Humbert, P.H., Int. J. Cosmet. Sci. 23, 347 (2001).CrossRefGoogle Scholar
26.Pailler-Mattei, C., Zahouani, H., Tribiol. Int. 39, 12 (2006).CrossRefGoogle Scholar
27.Takahashi, M., SÖFW-J. 126, 6 (2000).Google Scholar
28.Magnenat-Thalmann, N., Kalra, P., Lévêque, J.L., Bazin, R., Batisse, D., Querleux, B., IEEE Trans. Inf. Technol. Bioeng. 6, 317 (2002).CrossRefGoogle Scholar
29.Anasiewicz, S.M., Tappi J., 159 (October 1988).Google Scholar
30.Gun, C.S., Encyclopedia of Polymer Science and Engineering (Wiley, New York, 2003, ed. 3) pp. 97138.Google Scholar
31.Eisenberg, A., Physical Properties of Polymers (American Chemical Society, Washington, D.C., 1993, ed. 2) p. 61.Google Scholar
32.Feldstein, M.M., Polym. Sci. Ser. A 46, 1165 (2004).Google Scholar
33.Arkles, B., MRS Bull. 26 (5), 402 (May 2001).CrossRefGoogle Scholar
34.Sobieski, L., Tangney, T.J., in Handbook of Pressure Sensitive Adhesive Technology, Satas, D., Ed. (Van Nostrand Rheinhold, New York, 1989, ed. 2) p. 508.CrossRefGoogle Scholar
35.Dreschsler, L.E., Rabe, T.E., Smith, E.D., “Transfer-resistant cosmetic preparations,” U.S. Patent 6,074,654 (March 26, 1999).Google Scholar
36.Schmidt, R.G., Badour, L.R., Gordon, G.V., Synthesis and Properties of Silicones and Silicone-Modified Materials: ACS Symp. Ser. 838 (American Chemical Society, Washington, D.C., 2003) p. 170.CrossRefGoogle Scholar
37.Yukari, S., Kazuhiro, N., Naoki, N., J. SCCJ 36, 25 (2002).Google Scholar
38.Faulkner, E.B., Zavadoski, W.J., Cosmet. Toiletries 109, 69 (1994).Google Scholar
39.Miyoshi, T., Personal Care 2 (4), 51 (2001).Google Scholar
40.Shiozawa, J., J. Soc. Cosmet. Chem. Jpn. 27, 326 (1993).CrossRefGoogle Scholar
41.Rigano, L., Muukkonen, P., SÖFW-J. 129 (36), 38 (2003).Google Scholar
42.Braunagel, A., SÖFW-J. 128, 48 (2002).Google Scholar
43.Hunter, A., Cosmet. Toiletries 119, 51 (2004).Google Scholar
44.Drechsler, L.E., Rabe, T.E., Smith, E., “Transfer-resistant cosmetic compositions,” U.S. Patent 6,139,823 (October 31, 2000).Google Scholar
45.Rigano, L., Muukkonen, P., SÖFW-J. 129 (36), 38 (2003).Google Scholar