Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-04T16:40:20.009Z Has data issue: false hasContentIssue false

The Cell's Biological Rods and Ropes

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Despite a variety of shapes and sizes, the generic mechanical structure of cells is remarkably similar from one cell type to the next. All cells are bounded by a plasma membrane, a fluid sheet that controls the passage of materials into and out of the cell. Plant cells and bacteria reinforce this membrane with a cell wall, permitting the cell to operate at an elevated osmotic pressure. Simple cells, such as the bacterium shown in Figure 1a, possess a fairly homogeneous interior containing the cell's genetic blueprint and protein workhorses, but no mechanical elements. In contrast, as can be seen in Figure 1b, plant and animal cells contain internal compartments and a filamentous cytoskeleton—a network of biological ropes, cables, and poles that helps maintain the cell's shape and organize its contents.

Four principal types of filaments are found in the cytoskeleton: spectrin, actin, microtubules, and a family of intermediate filaments. Not all filaments are present in all cells. The chemical composition of the filaments shows only limited variation from one cell to another, even in organisms as diverse as humans and yeasts. Membranes have a more variable composition, consisting of a bi-layer of dual-chain lipid molecules in which are embedded various proteins and frequently a moderate concentration of cholesterol. The similarity of the cell's mechanical elements in chemical composition and physical characteristics encourages us to search for universal strategies that have developed in nature for the engineering specifications of the cell. In this article, we concentrate on the cytoskeleton and its filaments.

Type
Materials Science of the Cell
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J.P., Molecular Biology of the Cell, 3rd ed. (Garland, New York, 1994), p. 12.Google Scholar
2.Flory, P.J., Statistical Mechanics of Chain Molecules (Wiley, New York, 1969).CrossRefGoogle Scholar
3.Doi, M. and Edwards, S.F., The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986) p. 316.Google Scholar
4.Landau, L.D. and Lifshitz, E.M., Theory of Elasticity (Pergamon Press, Oxford, 1986), p. 32.Google Scholar
5.Liu, S.-C., Derick, L.H., and Palek, J., J. Cell Biol. 104 (1987) p. 527.CrossRefGoogle Scholar
6.Holley, M.C and Ashmore, J.F., J. Cell Sci. 96 (1990) p. 283.CrossRefGoogle Scholar
7.Boal, D.H., Seifert, U., and Shillcock, J.C., Phys. Rev. E 48 (1993) p. 4274.Google Scholar
8.Discher, D.E., Boal, D.H., and Boey, S.K., Phys. Rev. E 55 (1997) p. 4762.Google Scholar
9.Wintz, W., Everaers, R., and Seifert, U., J. Phys. I (France) 7 (1997) p. 1097.CrossRefGoogle Scholar
10.Lammert, P. and Discher, D.E., Phys. Rev. E 57 (1998) p. 4386.Google Scholar
11.Flory, P.J., Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953), p. 464.Google Scholar
12.Treloar, R.L.G., The Physics of Rubber Elasticity (Oxford University Press, Oxford, 1975).Google Scholar
13.Waugh, R. and Evans, E.A., Biophys. J. 26 (1979) p. 115.CrossRefGoogle Scholar
14.Strey, H., Peterson, M., and Sackmann, E., Biophys. J. 69 (1995) p. 478.CrossRefGoogle Scholar
15.Evans, E.A., Biophys. J. 13 (1973) p. 926.CrossRefGoogle Scholar
16.Sit, P.S., Spector, A.A., Lue, A.J.-C., Popel, A.S., and Brownell, W.E., Biophys. J. 72 (1997) p. 2812.CrossRefGoogle Scholar
17.Ferry, J.D., Viscoelastic Properties of Polymers, 3rd ed., Chapter 1 (Wiley, New York, 1980).Google Scholar
18.Ragsdale, G.K., Phelps, J., and Luby-Phelps, K., Biophys. J. 73 (1997) p. 2798.CrossRefGoogle Scholar
19.Bausch, A.R., Möller, W., and Sackmann, E., Biophys. J. 76 (1999) p. 573.CrossRefGoogle Scholar
20.Janmey, P.A., Hvidt, S., Lamb, J., and Stossel, T.P., Nature 345 (1990) p. 89.CrossRefGoogle Scholar
21.Xu, J., Wirtz, D., and Pollard, T.D., J. Biol. Chem. 273 (1998) p. 9570.CrossRefGoogle Scholar
22.Sato, M., Schwarz, W.H., and Pollard, T.D., Nature 325 (1987) p. 828.CrossRefGoogle Scholar
23.Stokke, B.T., Mikkelsen, A., and Elgsaeter, A., Biochim. Biophys. Acta 816 (1985) p. 102.CrossRefGoogle Scholar
24.Xu, J., Schwarz, W.H., Käs, J.A., Stossel, T.P., Janmey, P.A., and Pollard, T.D., Biophys. J. 74 (1998) p. 2731.CrossRefGoogle Scholar
25.Hinner, B., Tempel, M., Sackmann, E., Kroy, K., and Frey, E., Phys. Rev. Lett. 81 (1998) p. 2614.CrossRefGoogle Scholar
26.Palmer, A., Mason, T.G., Xu, J., Kuo, S.C., and Wirtz, D., Biophys. J. 76 (1999) p. 1063.CrossRefGoogle Scholar
27.Tang, J., Janmey, P.A., Stossel, T.P., and Ito, T., Biophys. J. 76 (1999) p. 2208.CrossRefGoogle Scholar
28.Isambert, H. and Maggs, A.C., Macro-molecules 29 (1996) p. 1036.CrossRefGoogle Scholar
29.Morse, D.C, Phys. Rev. E 58 (1998) p. R1237.Google Scholar
30.Gittes, F. and MacKintosh, F.C, Phys. Rev. E 58 (1998) p. R1241.Google Scholar
31.Furukawa, R., Kundra, R., and Fechheimer, M., Biochemistry 32 (1993) p. 12346.CrossRefGoogle Scholar
32.Janmey, P.A., Euteneuer, U., Traub, P., and Schliwa, M., J. Cell Biol. 113 (1991) p. 155.CrossRefGoogle Scholar
33.Boal, D.H., Biophys. J. 67 (1994) p. 521.CrossRefGoogle Scholar
34.Discher, D.E., Boal, D.H., and Boey, S.K., Biophys. J. 75 (1998) p. 1584.CrossRefGoogle Scholar
35.Discher, D.E., Mohandas, N., and Evans, E.A., Science 266 (1994) p. 1032.CrossRefGoogle Scholar