Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-24T08:21:46.107Z Has data issue: false hasContentIssue false

Bandgap Anomaly, Atomic Ordering, and Their Applications

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

In 1916 a group of Russian chemists—Kurnakov and his colleagues—discovered that slowly cooled CuxAu1 − xmetal alloys had anomalously low electrical resistivities at simple compositions of CuAu and Cu3Au. Nine years later in 1925, Swedish physicists Johansson and Linde found by x-ray-diffraction experiments that the alloys had ordered structures on the face-centered-cubic lattice, now called CuAu I-type and AuCu3-type. Two years later, Johansson and Linde discovered CuPt-type ordering in Cu0.5Pt0.5 alloy by noticing a similar anomaly in their electrical-resistivity measurements for CuxPt1 − x. These were among the events at the dawn of physical metallurgy and study on order-disorder transformations. Many years later in 1985, the first observation of ordering in semiconductor alloys was made in AlGaAs grown on GaAs(110); the type was CuAu I. CuPt-type ordering was observed in SiGe grown on Si(001). Since the (110) orientation of the substrate for AlGaAs was clumsy for practical purposes and the degree of ordering in SiGe was extremely low, these phenomena seemed to have little relevance in practical applications. Other observations were made such as famatinite-type ordering in GalnAs and chalcopyrite-type ordering in GaAsSb. These observations however were quite rare, with only isolated cases reported.

Type
Compositional Modulation and Ordering in Semiconductors
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cahn, R.W., in Twentieth Century Physics, vol. 3, edited by Brown, L.M., Pais, A., and Pippard, B. (IOP Publishing Ltd., London, 1995) p. 1515.CrossRefGoogle Scholar
2.Johansson, v.C.H. and Linde, J.O., Ann. Phys. (Leipzig) 82 (1927) p. 29.Google Scholar
3.Kuan, T.S., Kuech, T.F., Wang, W.I., and Wilkie, E.L., Phys. Rev. Lett. 54 (1985) p. 201.CrossRefGoogle Scholar
4.Ourmazd, A. and Bean, J.C., Phys. Rev. Lett. 55 (1985) p. 765.CrossRefGoogle Scholar
5.Norman, A.G., Seong, T-Y., Philips, B.A., Booker, G.R., and Mahajan, S., in Inst. Phys. Conf. Ser. No. 134, Section 6 (IOP Publishing Ltd., London, 1993) p. 979; references therein.Google Scholar
6.Murgatroyd, I.J., Norman, A.G., Booker, G.R., and Kerr, T.M., Proc. XIth Int. Cong, on Electron Microscopy (1986); J. Electron Microsc. 35, supplement edited by T. Imura, S. Maruse, and T. Suzuki (Kyoto, 1986) p. 1497.Google Scholar
7.Suzuki, T., Hino, I., Gomyo, A., and Nishida, K., Jpn. J. Appl. Phys. 21 (1982) p. L731.CrossRefGoogle Scholar
8.Gomyo, A., Suzuki, T., and Iijima, S., Phys. Rev. Lett. 60 (1988) p. 2645; T. Suzuki, A. Gomyo, K. Kobayashi, S. Kawata, and T. Yuasa, Jpn. J. Appl. Phys. 27 (1988) p. 2098.CrossRefGoogle Scholar
9.Gomyo, A., Kobayashi, K., Kawata, S., Hino, I., Suzuki, T., and Yuasa, T., J. Cryst. Growth 77 (1986) p. 367.CrossRefGoogle Scholar
10.Gomyo, A., Suzuki, T., Kobayashi, K., Kawata, S., Hino, I., and Yuasa, T., Appl. Phys. Lett. 50 (1987) p. 673.CrossRefGoogle Scholar
11.Wei, S-H. and Zunger, A., Phys. Rev. B 39 (1989) p. 3279; T. Kurimoto and N. Hamada, Phys. Rev. B 40 (1989) p. 3889.CrossRefGoogle Scholar
12.Kanata, T., Nishimoto, M., Nakayama, H., and Nishino, T., Phys. Rev. B 45 (1992) p. 6637.CrossRefGoogle Scholar
13.Suzuki, T., Gomyo, A., and Iijima, S., J. Cryst. Growth 93 (1988) p. 396.CrossRefGoogle Scholar
14.Ho, I.H. and Stringfellow, G.B., Appl. Phys. Lett. 65 (1994) p. 749.Google Scholar
15.Lu, Z.W., Wei, S-H., and Zunger, A., Phys. Rev. Lett. 66 (1991) p. 1753.CrossRefGoogle Scholar
16.Suzuki, T. and Gomyo, A., J. Cryst. Growth 111 (1991) p. 353; T. Suzuki, A. Gomyo, and S. Iijima, in Ordering at Surfaces and Interfaces (Proc. 3rd NEC Symp., Hakone, Japan, 1990); Springer Ser. on Materials Science, vol. 17 (Springer-Verlag, Heidelberg, 1992) p. 363; T. Suzuki and A. Gomyo, in Semiconductor Interfaces at the Sub-Nanometer Scale (Kluwer Academic Publishers, Netherlands, 1993) p. 11.CrossRefGoogle Scholar
17.Gomyo, A., Makita, K., Hino, I., and Suzuki, T., Phys. Rev. Lett. 72 (1994) p. 673.CrossRefGoogle Scholar
18.Gomyo, A.. Sumino, M., Hino, I., and Suzuki, T., Jpn. J. Appl. Phys. 34 (1995) p. L469.CrossRefGoogle Scholar
19.Gomyo, A., Makita, K., Hino, I., and Suzuki, T., J. Cryst. Growth 150 (1995) p. 533.CrossRefGoogle Scholar
20.Srivastava, G.P., Martin, J.L., and Zunger, A., Phys. Rev. B 31 (1985) p. 2561.CrossRefGoogle Scholar
21.Kelires, P.C. and Tersoff, J., Phys. Rev. Lett. 63 (1989) p. 1164.CrossRefGoogle Scholar
22.Bernard, J.E.. Froyen, S., and Zunger, A., Phys. Rev. B 44 (1991) p. 11178.CrossRefGoogle Scholar
23.Bernard, J.E., Mater. Sci. Forum 155/156 (1994) p. 131.CrossRefGoogle Scholar
24.Zahn, S.B., Froyen, S., and Zunger, A., Appl. Phys. Lett. 67 (1995) p. 3141.Google Scholar
25.Ueno, Y., Fujii, H., Kobayashi, K., Endo, K., Gomyo, A., Hara, K., Kawata, S., Yuasa, T., and and Suzuki, T., Jpn. J. Appl. Phys. 29 (1990) p. L1666; K. Itaya, M. Ishikawa, G. Hatakoshi, and U. Uematsu, IEEE J. Quantum Electron. 27 (1991) p. 1496.CrossRefGoogle Scholar
26.Fujii, H., Ueno, Y., Gomyo, A., Endo, K., and Suzuki, T., Appl. Phys. Lett. 61 (1992) p. 737.CrossRefGoogle Scholar
27.Maskarenhas, A., Kurtz, S., Kibbler, A., and Olson, J.M., Phys. Rev. Lett. 63 (1989) p. 2108.CrossRefGoogle Scholar
28.Minagawa, S. and Kondow, M., Electron. Lett. 25 (1989) p. 758.CrossRefGoogle Scholar
29.Endo, K., Kobayashi, K., Fujii, H., and Ueno, Y., Appl. Phys. Lett. 64 (1994) p. 146.CrossRefGoogle Scholar