Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T04:02:25.495Z Has data issue: false hasContentIssue false

Advances in the Creation of Filled Nanotubes and Novel Nanowires

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Soon after the identification of carbon nanotubes, produced by arc-discharge techniques, the possibility of introducing metals into the inner core of the tubes was considered (Figure 1). This idea followed logically from the successful observation of fullerenes containing endohedral metals. The introduction of metals or metal carbides and oxides into multiwalled nanotubes [usually 2–70 nm outside diameter (OD), <60 microns in length] may significantly alter their conducting, electronic, and mechanical properties, arising from the internal framework within these structures. Early theoretical work predicted that all carbon open nanotubes could behave as “molecular straws.” In this context, Ajayan and lijima were the first to introduce Pb by heating the metal with open-ended nanotubes (sometimes in the presence of oxygen). Capillarity, wetting, and surface tension play an important role in the process; other elements such as Bi, Cs, S, and Se were also introduced into nanotubes in this way. Generally, the filling of open nanotubes by capillary action is confined to low surface-tension substances. Alternative methods of encapsulating other materials within nanotubes have now been developed, including chemical treatment, arc discharge, catalyzed hydrocarbon pyrolysis, and electrochemical techniques. In addition, carbon nanotubes can be used as reactive templates to generate novel metal carbide and nitride nanorods. These developments represent only the tip of the iceberg, because numerous noncarbon materials (e.g., Si, SiOx, SiC, MoS2, WS2, etc.) are able to form novel nanowires and fullerene-like morphologies. This review discusses methods for generating these fascinating structures and evaluates their possible applications in materials science and engineering.

Type
Novel Methods of Nanoscale Wire Formation
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Iijima, S., Nature 354 (1991) p. 56.CrossRefGoogle Scholar
2.Heath, J.R., O'Brien, S.C., Zhang, Q., Liu, Y., Curl, R.F., Kroto, H.W., Tittel, F.K., and Smalley, R.E., J. Am. Chem. Soc. 107 (1985) p. 7779.CrossRefGoogle Scholar
3.O'Brien, S.C., Heath, J.R., Curl, R.F., and Smalley, R.E., J. Chem. Phys. 88 (1988) p. 220.CrossRefGoogle Scholar
4.Pederson, M.R. and Broughton, J.Q., Phys. Rev. Lett. 69 (1992) p. 2689.CrossRefGoogle Scholar
5.Ajayan, P.M. and Iijima, S., Nature 361 (1993) p. 333.CrossRefGoogle Scholar
6.Ajayan, P.M., Ebbesen, T.W., Ichihashi, T., Iijima, S., Tanigaki, K., and Hiura, H., Nature 362 (1993) p. 522.CrossRefGoogle Scholar
7.Dujardin, E., Ebbesen, T.W., Hiura, H., and Tanigaki, K., Science 265 (1994) p. 1850.CrossRefGoogle Scholar
8.Tsang, S.C., Chen, Y.K., Harris, P.J.F., and Green, M.L.H., Nature 372 (1994) p. 159.CrossRefGoogle Scholar
9.Chen, Y.K., Green, M.L.H., and Tsang, S.C., J. Chem. Soc., Chem. Commun. 21 (1996) p. 2489.CrossRefGoogle Scholar
10.Sloan, J., Cook, J., Heesom, J.R., Green, M.L.H., and Hutchison, J.L., J. Cryst. Growth 173 (1997) p. 81.CrossRefGoogle Scholar
11.Sloan, J., Cook, J., Green, M.L.H., Hutchison, J.L., and Tenne, R., J. Mater. Chem. 7 (1997) p. 1089.CrossRefGoogle Scholar
12.Chen, Y.K., Chu, A., Cook, J., Green, M.L.H., Harris, P.J.F., Heesom, J.R., Humphries, M., Sloan, J., Tsang, S.C., and Turner, J.F.C., J. Mater. Chem. 7 (1997) p. 545.CrossRefGoogle Scholar
13.Lago, R.M., Tsang, S.C., Lu, K.L., Chen, Y.K., and Green, M.L.H., J. Chem. Soc., Chem. Commun. 13 (1995) p. 1355.CrossRefGoogle Scholar
14.Chu, A., Cook, J., Heesom, J.R., Hutchison, J.L., Green, M.L.H., and Sloan, J., Chem. Mater. 8 (1996) p. 2751.CrossRefGoogle Scholar
15.Tsang, S.C., Davis, J.J., Green, M.L.H., Hill, H.A.O., Leung, Y.C., and Sadler, P.J., J. Chem. Soc., Chem. Commun. 17 (1995) p. 1803.CrossRefGoogle Scholar
16.Tsang, S.C., Guo, Z., Chen, Y.K., Green, M.L.H., Hill, H.A.O., Hambley, T.W., and Sadler, P.J., Angew. Chem. Int. Ed. Engl. 36 (1997) p. 2198.CrossRefGoogle Scholar
17.Sloan, J., Hammer, J., Zwiefka-Sibley, M., and Green, M.L.H., J. Chem. Soc., Chem. Commun. 3 (1998) p. 347.CrossRefGoogle Scholar
18.Dujardin, E., Ebbesen, T.W., Krishnan, A., and Treacy, M.M.J., Adv. Mater. 10(1998) p. 1472.3.0.CO;2-R>CrossRefGoogle Scholar
19.Ugarte, D., Châtelain, A., and de Heer, W.A., Science 274 (1996) p. 1897.CrossRefGoogle Scholar
20.Subramoney, S., Kavelaar, V., Ruoff, R.S., Lorents, D.C., Malhotra, R., and Kazmer, A.J., in Chemistry and Physics of Fullerenes and Related Materials 94–24, edited by Kadish, K.M. and Ruoff, R.S. (The Electrochemical Society, Pennington, NJ, 1994) p. 1498.Google Scholar
21.Ruoff, R.S., Lorents, D.C., Chan, B.C., Malhotra, R., and Subramoney, S., Science 259 (1993) p. 346.CrossRefGoogle Scholar
22.Liu, M. and Cowley, J.M., Carbon 33 (1995) p. 225.CrossRefGoogle Scholar
23.Seraphin, S., in Chemistry and Physics of Fullerencs and Related Materials 94–24, edited by Kadish, K.M. and Ruoff, R.S. (The Electrochemical Society, Pennington, NJ, 1994) p. 1433.Google Scholar
24.Subramoney, S., Ruoff, R.S., Lorents, D.C., Chan, B.C., Malhotra, R., Dyer, R.M.J., and Parvin, K., Carbon 32 (1994) p. 507.CrossRefGoogle Scholar
25.Yosida, Y., Appl. Phys. Lett. 62 (1993) p. 3447.CrossRefGoogle Scholar
26.Loiseau, A. and Pascard, H., Chem. Phys. Lett. 256 (1996) p. 246.CrossRefGoogle Scholar
27.Cuerret-Piécourt, C., Le Bouar, Y., Loiseau, A., and Pascard, H., Nature 372 (1994) p. 761.CrossRefGoogle Scholar
28.Loiseau, A., Full. Sci. Tech. 4 (1996) p. 1263.CrossRefGoogle Scholar
29.Demoncy, N., Stéphan, O., Brun, N., Coliex, C., Loiseau, A., and Pascard, H., Eur. Pliys. J. 4 (1998) p. 147.CrossRefGoogle Scholar
30.Tomita, M., Saito, Y., and Hayashi, T., Jpn. J. Appl. Phys. 32 (1993) p. L280.CrossRefGoogle Scholar
31.Saito, Y., Yoshikawa, M., Inagaki, M., Tomita, M., and Hayashi, T., Chem. Phys. Lett. 204 (1993) p. 277.CrossRefGoogle Scholar
32.Murakami, Y., Shibata, T., Okuyama, K., Arai, T., Suematsu, H., and Yoshida, Y., J. Phys. Chem. Solids 54 (1994) p. 1861.CrossRefGoogle Scholar
33.Majetich, S.A., Artman, J.O., McHenry, M.E., Nuhfer, N.T., and Staley, S.W., Phys. Rev. B 48 (1993) p. 16845.CrossRefGoogle Scholar
34.Seraphin, S., Zhou, D., Jiao, J., Withers, J.C., and Loufty, R., Appl. Phys. Lett. 63 (1993) p. 2073.CrossRefGoogle Scholar
35.Bandow, S. and Saito, Y., Jpn. J. Appl. Phys. 32 (1994) p. L1677.Google Scholar
36.Terrenes, M., Hsu, W.K., Schilder, A., Terrenes, H., Grobert, N., Hare, J.P., Zhu, Y.Q., Schwoerer, M., Prassides, K., Kroto, H.W., and Walton, D.R.M., Appl. Phys. A 66 (1998) p. 307.CrossRefGoogle Scholar
37.Hare, J.P., Hsu, W.K., Kroto, H.W., Lappas, A., Prassides, K., Terrenes, M., and Walton, D.R.M., Chem. Mater. 8 (1996) p. 6.CrossRefGoogle Scholar
38.Ata, M., Yamaura, K., and Hudson, A.J., Adv. Mater. 7 (1995) p. 286.CrossRefGoogle Scholar
39.Subramoney, S., Adv. Mater. 10 (1998) p. 1157.3.0.CO;2-N>CrossRefGoogle Scholar
40.McHenry, M.E., Nakamura, Y., Kirkpatrick, S., Johnson, F., Curtin, S., DeGraef, M., Nuhfer, N.T., Majetich, S.A., and Brunsman, E.M., in Chemistry and Physics of Fullerencs and Related Materials 95–26, edited by Kadish, K.M. and Ruoff, R.S. (The Electrochemical Society, Pennington, NJ, 1995) p. 1463.Google Scholar
41.Baker, R.T.K. and Harris, P.S., in Chemistry and Physics of Carbon (Marcel Dekker, New York, 1978) p. 83.Google Scholar
42.Oberlin, A., Endo, M., and Koyama, T., J. Cryst. Growth 32 (1976) p. 335.CrossRefGoogle Scholar
43.Dresselhaus, M.S., Dresselhaus, G., Sugihara, K., Spain, I.L., and Goldberg, H.A., Graphite Fibers and Filaments, vol. 3 (Springer, Berlin, 1988) p. 12.CrossRefGoogle Scholar
44.Endo, M., Takeuchi, K., Igarashi, S., Kobori, K., Shiraishi, M., Kroto, H.W., and Sarkar, A., Carbon 33 (1995) p. 873.CrossRefGoogle Scholar
45.Amelinckx, S., Zhang, X.B., Bernaerts, D., Zhang, X.F., Ivanov, V., and Nagy, J.B., Science 265 (1994) p. 635.CrossRefGoogle Scholar
46.Terrones, M., Grobert, N., Olivares, J., Zhang, J.P., Terrones, H., Kordatos, K., Hsu, W.K., Hare, J.P., Townsend, P.D., Prassides, K., Cheetham, A.K., Kroto, H.W., and Walton, D.R.M., Nature 388 (1997) p. 52.CrossRefGoogle Scholar
47.Terrones, M., Hsu, W.K., Kroto, H.W., and Walton, D.R.M., in Fullerenes and Related Structures: Topics in Current Chemistry, vol. 199, edited by Hirsch, A. (Springer-Verlag, Berlin, 1999) p. 189.CrossRefGoogle Scholar
48.Iijima, S. and Ichihashi, T., Nature 363(1993) p. 603.CrossRefGoogle Scholar
49.Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tománek, D., Fischer, J.E., and Smalley, R.E., Science 273 (1996) p. 483.CrossRefGoogle Scholar
50.Journet, C., Maser, W.K., Bernier, P., Loiseau, A., de la Chapelle, M. Lamy, Lefrant, S., Deniard, P., Lee, P., and Fischer, J.E., Nature 388 (1997) p. 756.CrossRefGoogle Scholar
51.Terrones, M., Grobert, N., Zhang, J.P., Terrones, H., Olivares, J., Hsu, W.K., Hare, J.P., Cheetham, A.K., Kroto, H.W., and Walton, D.R.M., Chan. Phys. Lett. 285 (1998) p. 299.CrossRefGoogle Scholar
52.Grobert, N., Terrones, M., Osborne, O.J., Terrones, H., Hsu, W.K., Trasobares, S., Zhu, Y.Q., Hare, J.P., Kroto, H.W., and Walton, D.R.M., Appl. Phys. A 67 (1998) p. 595.CrossRefGoogle Scholar
53.Rao, C.N.R., Sen, R., Satishkumar, B.C., and Govindaraj, A., J. Chem. Soc., Chem. Commun. 15 (1998) p. 1525.CrossRefGoogle Scholar
54.Hsu, W.K, Hare, J.P., Terrones, M., Harris, P.J.F., Kroto, H.W., and Walton, D.R.M., Nature 377 (1995) p. 687.CrossRefGoogle Scholar
55.Hsu, W.K., Terrones, H., Terrones, M., Grobert, N., Kirkland, A.I., Hare, J.P., Prassides, K., Townsend, P.D., Kroto, H.W., and Walton, D.R.M., Chem. Phys. Lett. 284 (1998) p. 177.CrossRefGoogle Scholar
56.Hsu, W.K., Li, J., Terrones, H., Terrones, M., Grobert, N., Zhu, Y.Q., Trasobares, S., Hare, J.P., Pickett, C.J., Kroto, H.W., and Walton, D.R.M., Chem. Phys. Lett. 301 (1999) p. 159.CrossRefGoogle Scholar
57.Hsu, W.K., Trasobares, S., Terrones, H., Terrones, M., Grobert, N., Zhu, Y.Q., Li, W.Z., Hare, J.P., Escudero, R., Kroto, H.W., and Walton, D.R.M., Chem. Mater. in press.Google Scholar
58.Dai, H., Wong, E.W., Lu, Y.Z., Fan, S., and Lieber, C.M., Nature 375 (1995) p. 769.CrossRefGoogle Scholar
59.Han, W., Fan, S., Li, Q., and Hu, Y., Science 277 (1997) p. 1287.CrossRefGoogle Scholar
60.Ajayan, P.M., Stephan, O., Redlich, Ph., and Colliex, C., Nature 375 (1995) p. 564.CrossRefGoogle Scholar
61.Morales, A.M. and Lieber, C.M., Science 279 (1998) p. 208.CrossRefGoogle Scholar
62.Wang, N., Tang, Y.H., Zhang, Y.F., Yu, D.P., Lee, C.S., Bello, I., and Lee, S.T., Chem. Phys. Lett. 283 (1998) p. 368.CrossRefGoogle Scholar
63.Zhu, Y.Q., Hsu, W.K., Terrones, M., Grobert, N., Terrones, H., Hare, J.P., Kroto, H.W., and Walton, D.R.M., J. Mater Chem. 8 (1998) p. 1859.CrossRefGoogle Scholar
64.Yu, D.P., Huang, Q.L., Ding, Y., Zhang, H.Z., Bai, Z.G., Wang, J.J., Zou, Y.H., Qian, W., Xiong, G.C., and Feng, S.Q., Appl. Phys. Lett. 73 (1998) p. 3076.CrossRefGoogle Scholar
65.Zhou, D. and Seraphin, S., Chem. Phys. Lett. 222 (1994) p. 232.CrossRefGoogle Scholar
66.Meng, G.W., Zhang, L.D., Mo, C.M., Zhang, S.Y., Qin, Y., Feng, S.P., and Li, H.J., J. Mater. Res. 13 (1998) p. 2533.CrossRefGoogle Scholar
67.Zhang, Y., Suenaga, K., Colliex, C., and Iijima, S., Science 281 (1998) p. 97.Google Scholar
68.Zhu, Y.Q., Hu, W.B., Hsu, W.K., Terrones, M., Grobert, N., Karali, T., Terrones, H., Hare, J.P., Townsend, P.D., Kroto, H.W., and Walton, D.R.M., Adv. Mater. in press.Google Scholar
69.Margulis, L., Saltra, G., Tenne, R., and Tallanker, M., Nature 365 (1993) p. 113.CrossRefGoogle Scholar
70.Parilla, P.A., Dillon, A.C., Jones, K.M., Riker, G., Schulz, D.L., Ginley, D.S., and Heben, M.J., Nature 397 (1999) p. 114.CrossRefGoogle Scholar
71.Tenne, R., Margulis, L., Genut, M., and Hodes, G., Nature 360 (1992) p. 444.CrossRefGoogle Scholar
72.Chopra, N.G., Luyken, R.J., Cherrey, K., Crespi, V.H., Cohen, M.L., Louie, S.G., and Zettl, A., Science 269(1995) p. 966.CrossRefGoogle Scholar
73.Terrones, M., Hsu, W.K., Terrones, H., Zhang, J.P., Ramos, S., Hare, J.P., Castillo, R., Prassides, K., Cheetham, A.K., Kroto, H.W., and Walton, D.R.M., Chem. Phys. Lett. 259 (1996) p. 568.CrossRefGoogle Scholar
74.Loiseau, A., Willaime, F., Demoncy, N., Hug, G., and Pascard, H., Phys. Rev. Lett. 76 (1996) p. 4737.CrossRefGoogle Scholar
75.Suenaga, K., Colliex, C., Demoncy, N., Loiseau, A., Pascard, H., and Willaime, F., Science 278 (1997) p. 653.CrossRefGoogle Scholar
76.Redlich, Ph., Terrones, M., Mateca-Diego, C., Hsu, W.K., Terrones, H., Kroto, H.W., Walton, D.R.M., and Rühle, M. (unpublished).Google Scholar
77.Terrones, M., Redlich, Ph., Grobert, N., Trasobares, S., Hsu, W.K., Terrones, H., Zhu, Y.Q., Hare, J.P., Cheetham, A.K., Rühle, M., Kroto, H.W., and Walton, D.R.M., Adv. Mater. 11 (1999) p. 655.3.0.CO;2-6>CrossRefGoogle Scholar
78.Rothschild, A., Sloan, J., York, A.P.E., Green, M.L.H., Hutchison, J.L., and Tenne, R., J. Chem. Soc., Chem. Commun. 4 (1999) p. 363.CrossRefGoogle Scholar
79.Sloan, J., Wright, D.M., Woo, H.G., Brown, S., York, A.P.E., Coleman, K.S., Hutchison, J.L., and Green, M.L.H., J. Chem. Soc. Chem. Commun. 8 (1999) p. 699.CrossRefGoogle Scholar