Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-02T19:52:43.225Z Has data issue: false hasContentIssue false

Advanced volume reconstruction and data mining methods in atom probe tomography

Published online by Cambridge University Press:  08 January 2016

F. Vurpillot
Affiliation:
Groupe de Physique des Matériaux, UMR CNRS 6634, Université et INSA de Rouen, France; [email protected]
W. Lefebvre
Affiliation:
Groupe de Physique des Matériaux, UMR CNRS 6634, Université et INSA de Rouen, France; [email protected]
J.M. Cairney
Affiliation:
School of Aerospace Mechanical and Mechatronic Engineering, and Australian Centre for Microscopy & Microanalysis, The University of Sydney, Australia; [email protected]
C. Oberdorfer
Affiliation:
Institute of Materials Science, University of Stuttgart, Germany; [email protected]
B.P. Geiser
Affiliation:
CAMECA Instruments, Inc., USA; email [email protected]
K. Rajan
Affiliation:
Department of Materials Design and Innovation, The State University of New York at Buffalo, USA; [email protected]
Get access

Abstract

This article reviews post-analysis processing methods for data acquired using atom probe tomography (APT). Field-induced aberrations of APT images arise from distorted ion flight trajectories and differences in ion evaporation rates. Addressing this issue requires the development of image processing tools that yield three-dimensionally reconstructed images that reliably reflect the original specimens. One of the biggest advantages of the APT technique is its ability to collect information about millions of individual atoms. Understanding these data requires the development of mathematical and statistical data mining tools, involving disciplines beyond the basic physics of APT. The above issues have important implications for addressing materials science-related questions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Möbus, G., Inkson, B.J., Mater. Today 10 (12), 18 (2007).Google Scholar
Thomas, J.M., Midgley, P.A., Ducati, C., Leary, R.K., Prog. Nat. Sci. Mater. Int. 23, 222 (2013).Google Scholar
Van Tendeloo, G., Van Dyck, D., Pennycook, S.J., Handbook of Nanoscopy (Wiley-VCH, Weinheim, 2012), vols. 1 and 2.CrossRefGoogle Scholar
Miller, M.K., Forbes, R.G., Atom Probe Tomography: The Local Electrode Atom Probe (Springer, New York, 2014).Google Scholar
Arslan, I., Marquis, E.A., Homer, M., Hekmaty, M.A., Bartelt, N.C., Ultramicroscopy 108, 1579 (2008).Google Scholar
Van Aert, S., Batenburg, K.J., Rossell, M.D., Erni, R., Van Tendeloo, G., Nature 470, 374 (2011).Google Scholar
Xu, R., Chen, C.-C., Wu, L., Scott, M.C., Theis, W., Ophus, C., Bartels, M., Yang, Y., Ramezani-Dakhel, H., Sawaya, M.R., Heinz, H., Marks, L.D., Ercius, P., Miao, J., Nat. Mater. 14, 1099 (2015), doi:10.1038/nmat4426.CrossRefGoogle Scholar
Larson, D.J., Prosa, T.J., Ulfig, R.M., Geiser, B.P., Kelly, T.F., Local Electrode Atom Probe Tomography: A User’s Guide (Springer, New York, 2013).CrossRefGoogle Scholar
Gault, B., Moody, M.P., Cairney, J.M., Ringer, S.P., Atom Probe Microscopy (Springer, New York, 2012).Google Scholar
Vurpillot, F., Gault, B., Geiser, B.P., Larson, D.J., Ultramicroscopy 132, 19 (2013).Google Scholar
Larson, D.J., Gault, B., Geiser, B.P., De Geuser, F., Vurpillot, F., Curr. Opin. Solid State Mater. Sci. 17 (5), 236 (2013).Google Scholar
Cairney, J.M., Rajan, K., Haley, D., Gault, B., Bagot, P.A., Choi, P.P., Felfer, P.J., Ringer, S.P., Marceau, R.K., Moody, M.P., Ultramicroscopy (forthcoming), http://dx.doi.org/10.1016/j.ultramic.2015.05.006.Google Scholar
Bas, P., Bostel, A., Deconihout, B., Blavette, D., Appl. Surf. Sci. 87/88, 298 (1995).Google Scholar
Geiser, B.P., Larson, D.J., Oltman, E., Gerstl, S.S.A., Reinhard, D.A., Kelly, T.F., Prosa, T.J., Microsc. Microanal. 15, 292 (2009).Google Scholar
Gault, B., Haley, D., de Geuser, F., Moody, M.P., Marquis, E.A., Larson, D.J., Geiser, B.P., Ultramicroscopy 111, 448 (2011).Google Scholar
Vurpillot, F., Oberdorfer, C., Ultramicroscopy (forthcoming), http://dx.doi.org/10.1016/j.ultramic.2014.12.013.Google Scholar
Grenier, A., Duguay, S., Barnes, J.P., Serra, R., Rolland, N., Audoit, G., Morin, P., Gouraud, P., Cooper, D., Blavette, D., Vurpillot, F., Appl. Phys. Lett. 106, 213102 (2015).Google Scholar
Rigutti, L., Blum, I., Shinde, D., Hernandez Maldonado, D., Lefebvre, W., Houard, J., Vurpillot, F., Vella, A., Tchernycheva, M., Durand, C., Eymery, J., Deconihout, B., Nano Lett. 14, 107 (2014).Google Scholar
Stender, P., Heil, T., Kohl, H., Schmitz, G., Ultramicroscopy 109, 612 (2009).Google Scholar
Petersen, T.C., Ringer, S.P., J. Appl. Phys. 105, 103518 (2009).Google Scholar
Gorman, B., Diercks, D., Kaufman, M., Ulfig, R., Lawrence, D., Thompson, K., Larson, D.J., Microsc. Microanal. 12 (S2), 1720 (2006).CrossRefGoogle Scholar
Devaraj, A., Colby, R., Vurpillot, F., Thevuthasan, S., J. Phys. Chem. Lett. 5, 1361 (2014).Google Scholar
Herbig, M., Raabe, D., Li, Y.J., Choi, P., Zaefferer, S., Goto, S., Phys. Rev. Lett. 112, 126103 (2014).Google Scholar
De Geuser, F., Lefebvre, W., Danoix, F., Vurpillot, F., Forbord, B., Blavette, D., Surf. Interface Anal. 39 (2–3), 268 (2007).Google Scholar
Rajan, K., Ed., Informatics for Materials Science and Engineering (Elsevier, Oxford, UK, 2013).Google Scholar
Srinivasan, S., Kaluskar, K., Dumpala, S., Broderick, S., Rajan, K., Ultramicroscopy (forthcoming), http://dx.doi.org/10.1016/j.ultramic.2015.03.012.Google Scholar
Kaczynski, T., Mischaikow, K., Mrozek, M., Computational Homology, Applied Mathematical Sciences (Springer-Verlag, New York, 2004) Vol. 157.Google Scholar
Srinivasan, S., Kaluskar, K., Broderick, S., Rajan, K., Ultramicroscopy (forthcoming), http://dx.doi.org/10.1016/j.ultramic.2015.04.009.Google Scholar
Felfer, P., Ceguerra, A., Ringer, S.P., Cairney, J.M., Ultramicroscopy 150, 30 (2015).Google Scholar
Lefebvre, W., Philippe, T., Vurpillot, F., Ultramicroscopy 111, 200 (2011).Google Scholar
Felfer, P.J., Ceguerra, A., Ringer, S.P., Cairney, J.M., Ultramicroscopy 132, 100 (2013).CrossRefGoogle Scholar
Delaunay, B., Bull. Acad. Sci. URSS Cl. Sci. Math. Nat. Sci. Nat. No. 6, 793 (1934).Google Scholar
Karnesky, R.A., Isheim, D., Seidman, D.N., Appl. Phys. Lett. 91, 013111 (2007).Google Scholar
Samudrala, S.K., Felfer, P.J., Araullo-Peters, V.J., Cao, Y., Liao, X.Z., Cairney, J.M., Ultramicroscopy 132, 158 (2013).CrossRefGoogle Scholar
Tang, F., Gianola, D.S., Moody, M.P., Cairney, J.M., Acta Mater. 60, 1038 (2012).CrossRefGoogle Scholar
Young, D.J., Nguyen, T., Felfer, P.J., Zhang, J., Cairney, J.M., Scr. Mater. 77, 29 (2014).Google Scholar
Marquis, E.A., Vurpillot, F., Microsc. Microanal. 14, 561 (2008).CrossRefGoogle Scholar
Vurpillot, F., Bostel, A., Blavette, D., Appl. Phys. Lett. 76, 3127 (2000).Google Scholar
Vurpillot, F., “Etude de la Fonction de Transfert Pointe-Image de la Sonde Atomique Tomographique,” PhD thesis, Université de Rouen (2001).Google Scholar
Aurenhammer, F., ACM Comput. Surv. 23, 345 (1991).Google Scholar
Du, Q., Faber, V., Gunzburger, M., SIAM Rev. 41, 637 (1999), http://dx.doi.org/10.1137/S0036144599352836.Google Scholar
Lefebvre, W., Hernandez-Maldonado, D., Moyon, F., Cuvilly, F., Vaudolon, C., Shinde, D., Vurpillot, F., Ultramicroscopy (2015), doi:10.1016/j.ultramic.2015.02.011.Google Scholar