Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T23:40:15.982Z Has data issue: false hasContentIssue false

3D printing for regenerative medicine: From bench to bedside

Published online by Cambridge University Press:  12 February 2015

Juan Li
Affiliation:
Columbia University, USA, and Sichuan University, China
Ling He
Affiliation:
Columbia University, USA; [email protected]
Chen Zhou
Affiliation:
Columbia University, USA; [email protected]
Yue Zhou
Affiliation:
Columbia University, USA; [email protected]
Yanying Bai
Affiliation:
Columbia University, USA
Francis Y. Lee
Affiliation:
Columbia University, USA; [email protected]
Jeremy J. Mao
Affiliation:
Columbia University, USA; [email protected]
Get access

Abstract

Organ shortage is a severe challenge worldwide. Three-dimensional (3D) printing, a rapidly developing engineering and materials science tool, holds considerable promise in generating implantable organ scaffolds that may reduce or eliminate organ shortage. However, translation of 3D printing into clinical therapies has been astonishingly slow and certainly has not matched the pace of technology development. This review outlines challenges and opportunities for the application of 3D printing in tissue and organ regeneration, with emphasis on in vivo applications of 3D-printed scaffolds. Three-dimensional-printed scaffolds for the regeneration of complex tissues and organs, including bone, cartilage, tooth, and skin, serve as prototypes for 3D printing of other tissues and organs such as the liver, kidney, or heart. The aspiration to reduce or eliminate organ shortage appears to hinge on the translation of 3D bioprinting technologies into preclinical studies and clinical trials. The remaining challenges of cell survival, directed differentiation, angiogenesis, and metabolic exchange are far from trial and need to be addressed. Three-dimensional-printed materials will remain a biomaterials and engineering showcase unless applications in preclinical and clinical models are realized. In balance, 3D printing holds considerable promise in regenerative medicine as a unique approach to address organ shortage.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Derby, B., Science 338, 921 (2012).CrossRefGoogle Scholar
Badylak, S.F., Weiss, D.J., Caplan, A., Macchiarini, P., Lancet 379, 943 (2012).CrossRefGoogle Scholar
Cima, M., Sachs, E., Fan, T.L., Bredt, J.F., Michaels, S.P., Khanuja, S., “Three-dimensional Printing Techniques,” US Patent 5204055 (1993).Google Scholar
Xu, F., Celli, J., Rizvi, I., Moon, S., Hasan, T., Demirci, U., J. Biotechnol. 6, 204 (2011).Google Scholar
Wang, X., Yan, Y., Zhang, R., Tissue Eng. Part B 16, 189 (2010).Google Scholar
Layani, M., Darmawan, P., Foo, W.L., Liu, L., Kamyshny, A., Mandler, D., Magdassi, S., Lee, P.S., Nanoscale 6, 4572 (2014).CrossRefGoogle Scholar
Guillotin, B., Souquet, A., Catros, S., Duocastella, M., Pippenger, B., Bellance, S., Bareille, R., Remy, M., Bordenave, L., Amedee, J., Guillemot, F., Biomaterials 31, 7250 (2010).CrossRefGoogle Scholar
Demirci, U., Montesano, G., Lab Chip 7, 1428 (2007).CrossRefGoogle Scholar
Song, Y.S., Adler, D., Xu, F., Kayaalp, E., Nureddin, A., Anchan, R.M., Maas, R.L., Demirci, U., Proc. Natl. Acad. Sci. U.S.A. 107, 1074596 (2010).Google Scholar
Liu, D., Zhuang, J., Shuai, C., Peng, S., Biofabrication 5, 025005 (2013).CrossRefGoogle Scholar
Pan, Y.Q., Zheng, R., Liu, F.B., Jing, W., Yong, C., Liang, X.Y., Bing, W., Int. J. Surg. 12, 71 (2014).CrossRefGoogle Scholar
Mironov, V., Boland, T., Trusk, T., Forgacs, G., Markwald, R.R., Trends Biotechnol. 21, 157 (2003).Google Scholar
Seol, Y.J., Kang, H.W., Lee, S.J., Atala, A., Yoo, J.J., Eur. J. Cardiothorac. Surg. 46, 342 (2014).CrossRefGoogle Scholar
Guillemot, F., Mironov, V., Nakamura, M., Biofabrication 2, 010201 (2010).Google Scholar
Pashuck, E.T., Stevens, M.M., Sci. Transl. Med. 4, 160sr4 (2012).Google Scholar
Castilho, M., Dias, M., Vorndran, E., Gbureck, U., Fernandes, P., Pires, I., Gouveia, B., Armes, H., Pires, E., Rodrigues, J., Biofabrication 6, 025005 (2014).Google Scholar
Fedorovich, N.E., Alblas, J., Hennink, W.E., Oner, F.C., Dhert, W.J., Trends Biotechnol. 29, 601 (2011).Google Scholar
Tamimi, F., Torres, J., Al-Abedalla, K., Lopez-Cabarcos, E., Alkhraisat, M.H., Bassett, D.C., Gbureck, U., Barralet, J.E., Biomaterials 35, 5436 (2014).CrossRefGoogle Scholar
Lee, J.W., Kang, K.S., Lee, S.H., Kim, J.Y., Lee, B.K., Cho, D.W., Biomaterials 32, 744 (2011).Google Scholar
Shim, J.H., Kim, S.E., Park, J.Y., Kundu, J., Kim, S.W., Kang, S.S., Cho, D.W., Tissue Eng. Part A 20, 1980 (2014).Google Scholar
Poldervaart, M.T., Wang, H., van der Stok, J., Weinans, H., Leeuwenburgh, S.C., Oner, F.C., Dhert, W.J., Alblas, J., PLoS One 8, e72610 (2013).CrossRefGoogle Scholar
Poldervaart, M.T., Gremmels, H., van Deventer, K., Fledderus, J.O., Oner, F.C., Verhaar, M.C., Dhert, W.J., Alblas, J., J. Control. Release 184, 58 (2014).Google Scholar
Seol, Y.J., Park, J.Y., Jung, J.W., Jang, J., Girdhari, R., Kim, S.W., Cho, D.W., Tissue Eng. Part A (2014), doi: 10.1089/ten.tea.2012.0726.Google Scholar
Fielding, G., Bose, S., Acta. Biomater. 9, 9137 (2013).Google Scholar
Tarafder, S., Davies, N.M., Bandyopadhyay, A., Bose, S., Biomater. Sci. 1, 1250 (2013).Google Scholar
Jensen, J., Rolfing, J.H., Svend Le, D.Q., Kristiansen, A.A., Nygaard, J.V., Hokland, L.B., Bendtsen, M., Kassem, M., Lysdahl, H., Bunger, C.E., J. Biomed. Mater. Res. A 102, 2993 (2014).Google Scholar
Seyednejad, H., Gawlitta, D., Kuiper, R.V., de Bruin, A., van Nostrum, C.F., Vermonden, T., Dhert, W.J., Hennink, W.E., Biomaterials 33, 4309 (2012).CrossRefGoogle Scholar
Sicchieri, L.G., Crippa, G.E., de Oliveira, P.T., Beloti, M.M., Rosa, A.L., J. Tissue Eng. Regen. Med. 6, 155 (2012).CrossRefGoogle Scholar
Tarafder, S., Balla, V.K., Davies, N.M., A, J. Tissue Eng. Regen. Med. 7, 631 (2013).Google Scholar
Zhou, Z., Buchanan, F., Mitchell, C., Dunne, N., Mater. Sci. Eng. C 38, 1 (2014).Google Scholar
Inzana, J.A., Olvera, D., Fuller, S.M., Kelly, J.P., Graeve, O.A., Schwarz, E.M., Kates, S.L., Awad, H.A., Biomaterials 35, 4026 (2014).Google Scholar
Mao, J.J., Stosich, M.S., Moioli, E.K., Lee, C.H., Fu, S.Y., Bastian, B., Eisig, S.B., Zemnick, C., Ascherman, J., Wu, J., Rohde, C., Ahn, J., Tissue Eng. Part B 16, 257 (2010).CrossRefGoogle Scholar
Temple, J.P., Hutton, D.L., Hung, B.P., Huri, P.Y., Cook, C.A., Kondragunta, R., Jia, X., Grayson, W.L., J. Biomed. Mater. Res. A (2014), doi: 10.1002/jbm.a.35107.Google Scholar
Strobel, L.A., Rath, S.N., Maier, A.K., Beier, J.P., Arkudas, A., Greil, P., Horch, R.E., Kneser, U., J. Tissue Eng. Regen. Med. 6, 176 (2014).CrossRefGoogle Scholar
Fedorovich, N.E., Wijnberg, H.M., Dhert, W.J., Alblas, J., Tissue Eng. Part A 17, 2113 (2011).CrossRefGoogle Scholar
Weinand, C., Gupta, R., Weinberg, E., Madisch, I., Neville, C.M., Jupiter, J.B., Vacanti, J.P., Tissue Eng. Part A 15, 2605 (2009).Google Scholar
Keriquel, V., Guillemot, F., Arnault, I., Guillotin, B., Miraux, S., Amedee, J., Fricain, J.C., Catros, S., Biofabrication 2, 014101 (2010).Google Scholar
Lee, C.H., Cook, J.L., Mendelson, A., Moioli, E.K., Yao, H., Mao, J.J., Lancet 376, 440 (2010).Google Scholar
Schuurman, W., Klein, T.J., Dhert, W.J., van Weeren, P.R., Hutmacher, D.W., Malda, J., J. Tissue Eng. Regen. Med. (2012), doi: 10.1002/term.1638.Google Scholar
Xu, T., Binder, K.W., Albanna, M.Z., Dice, D., Zhao, W., Yoo, J.J., Atala, A., Biofabrication 5, 015001 (2013).Google Scholar
Cui, X., Breitenkamp, K., Finn, M.G., Lotz, M., D’Lima, D.D., Tissue Eng. Part A 18, 1304 (2012).Google Scholar
Lee, C.H., Marion, N.W., Hollister, S., Mao, J.J., Tissue Eng. Part A 15, 3923 (2009).Google Scholar
Fedorovich, N.E., Schuurman, W., Wijnberg, H.M., Prins, H.J., van Weeren, P.R., Malda, J., Alblas, J., Dhert, W.J., Tissue Eng. Part C 18, 33 (2012).Google Scholar
Mendelson, A., Frank, E., Allred, C., Jones, E., Chen, M., Zhao, W., Mao, J.J., FASEB J. 25, 3496 (2011).CrossRefGoogle Scholar
Kim, K., Lee, C.H., Kim, B.K., Mao, J.J., J. Dent. Res. 89, 842 (2010).CrossRefGoogle Scholar
Kim, J.Y., Xin, X., Moioli, E.K., Chung, J., Lee, C.H., Chen, M., Fu, S.Y., Koch, P.D., Mao, J.J., Tissue Eng. Part A 16, 3023 (2010).CrossRefGoogle Scholar
Park, C.H., Rios, H.F., Jin, Q., Bland, M.E., Flanagan, C.L., Hollister, S.J., Giannobile, W.V., Biomaterials 31, 5945 (2010).Google Scholar
Park, C.H., Rios, H.F., Taut, A.D., Padial-Molina, M., Flanagan, C.L., Pilipchuk, S.P., Hollister, S.J., Giannobile, W.V., Tissue Eng. Part C 20, 533 (2014).Google Scholar
Lee, C.H., Hajibandeh, J., Suzuki, T., Fan, A., Shang, P., Mao, J.J., Tissue Eng. Part A 20, 1342 (2014).Google Scholar
Groeber, F., Holeiter, M., Hampel, M., Hinderer, S., Schenke-Layland, K., Clin. Plast. Surg. 39, 33 (2012).Google Scholar
Lee, W., Debasitis, J.C., Lee, V.K., Lee, J.H., Fischer, K., Edminster, K., Park, J.K., Yoo, S.S., Biomaterials 30, 1587 (2009).CrossRefGoogle Scholar
Lee, V., Singh, G., Trasatti, J.P., Bjornsson, C., Xu, X., Tran, T.N., Yoo, S.S., Dai, G., Karande, P., Tissue Eng. Part C 20, 473 (2014).Google Scholar
Koch, L., Deiwick, A., Schlie, S., Michael, S., Gruene, M., Coger, V., Zychlinski, D., Schambach, A., Reimers, K., Vogt, P.M., Chichkov, B., Biotechnol. Bioeng. 109, 1855 (2012).Google Scholar
Orgill, D.P., N. Engl. J. Med. 360, 893 (2009).CrossRefGoogle Scholar
Metcalfe, A.D., Ferguson, M.W., J. R. Soc. Interface 4, 413 (2007).Google Scholar
MacNeil, S., Nature 445, 874 (2007).Google Scholar
Killat, J., Reimers, K., Choi, C.Y., Jahn, S., Vogt, P.M., Radtke, C., Int. J. Mol. Sci. 14, 14460 (2013).Google Scholar
Skardal, A., Mack, D., Kapetanovic, E., Atala, A., Jackson, J.D., Yoo, J., Soker, S., Stem Cells Transl. Med. 1, 792 (2012).CrossRefGoogle Scholar
Michael, S., Sorg, H., Peck, C.T., Koch, L., Deiwick, A., Chichkov, B., Vogt, P.M., Reimers, K., PLoS One 8, e57741 (2013).Google Scholar
Xu, T., Binder, K.W., Aboushwareb, T., Dice, D., Atala, A., Yoo, J.J., J. Am. Coll. Surg. 211, S76 (2010).Google Scholar
Burke, J.F., Yannas, I.V., Quinby, W.C. Jr., Bondoc, C.C., Jung, W.K., Ann. Surg. 194, 413 (1981).Google Scholar
Yannas, I.V., Burke, J.F., Orgill, D.P., Skrabut, E.M., Science 215, 174 (1982).CrossRefGoogle Scholar
Kitagawa, Y., Naganuma, Y., Yajima, Y., Yamada, M., Seki, M., Biofabrication 6, 035011 (2014).CrossRefGoogle Scholar
Li, X., He, J., Bian, W., Li, Z., Li, D., Snedeker, J.G., Biofabrication 6, 015010 (2014).Google Scholar
Yao, R., Zhang, R., Lin, F., Luan, J., Biofabrication 4, 045003 (2012).Google Scholar
Park, J.H., Jung, J.W., Kang, H.W., Joo, Y.H., Lee, J.S., Cho, D.W., Biofabrication 4, 035004 (2012).Google Scholar
Chang, J.W., Park, S.A., Park, J.K., Choi, J.W., Kim, Y.S., Shin, Y.S., Kim, C.H., Artif. Organs 38, E95 (2014).Google Scholar
Gaebel, R., Ma, N., Liu, J., Guan, J., Koch, L., Klopsch, C., Gruene, M., Toelk, A., Wang, W., Mark, P., Wang, F., Chichkov, B., Li, W., Steinhoff, G., Biomaterials 32, 9218 (2011).Google Scholar
Zieber, L., Or, S., Ruvinov, E., Cohen, S., Biofabrication 6, 024102 (2014).Google Scholar
Xu, T., Zhao, W., Zhu, J.M., Albanna, M.Z., Yoo, J.J., Atala, A., Biomaterials 34, 130 (2013).CrossRefGoogle Scholar
Choi, H.J., Kim, J.M., Kwon, E., Che, J.H., Lee, J.I., Cho, S.R., Kang, S.K., Ra, J.C., Kang, B.C., J. Korean Med. Sci. 26, 482 (2011).CrossRefGoogle Scholar
Park, C.H., Rios, H.F., Jin, Q., Sugai, J.V., Padial-Molina, M., Taut, A.D., Flanagan, C.L., Hollister, S.J., Giannobile, W.V., Biomaterials 33, 137 (2012).Google Scholar
Seliktar, D., Dikovsky, D., Napadensky, E., Israel J. Chem. 53, 795 (2013).Google Scholar
Novosel, E.C., Kleinhans, C., Kluger, P.J., Adv. Drug Deliv. Rev. 63, 300 (2011).Google Scholar
Mironov, V., Reis, N., Derby, B., Tissue Eng. 12, 631 (2006).Google Scholar
Dababneh, B.A., Ibrahim, T.O., J. Manuf. Sci. Eng. 136, 061016 (2014).Google Scholar
Genetic Engineering and Biotechnology News, “Printing the Human Body,”http://www.genengnews.com/insight-and-intelligence/infographic-printing-the-human-body/77900028/.Google Scholar