Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-19T13:59:33.819Z Has data issue: false hasContentIssue false

XAFS Study of Iron and Nickel Speciation in Complex Sodium Aluminophosphate Based Glasses

Published online by Cambridge University Press:  20 February 2017

S.V. Stefanovsky*
Affiliation:
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Moscow, Russia
V.Y. Murzin
Affiliation:
National Research Center “Kurchatov Institute”, Moscow, Russia
M.B. Remizov
Affiliation:
Production Association “Mayak”, Ozersk, Chelyabinsk reg., Russia
B.F. Myasoedov
Affiliation:
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Moscow, Russia Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Moscow, Russia
*
Get access

Abstract

Iron and nickel oxidation state and coordination in complex sodium aluminophosphate based glasses suggested as potential matrices for immobilization of legacy high level waste currently stored in stainless steel tanks at PA «Mayak» (Ural reg., Russia) were determined by X-ray absorption fine structure spectroscopy (XAFS: XANES/EXAFS). The glasses containing (wt.%) 20-30 Na2O, 6-12 Al2O3, 40-52 P2O5, 2-5 Fe2O3, 1-3 NiO, 0-6 B2O3, 10-15 other waste oxides produced by quenching of their melts were fully amorphous or contained minor Fe and Ni free phases. Fe in the glasses was found to be predominantly trivalent with an average Fe-O distance and a coordination number (CN) in the first shell of 1.94 to 1.97 Å and 5.2 to 5.8, respectively, mostly in octahedral oxygen environment. Ni is divalent in all the glasses and has in the first shell an average Ni-O distance and CN of 1.97 to 2.03 Å and 4.9 to 5.6, respectively. The first shell of both Fe and Ni is somewhat distorted. The second and further coordination shells are weakly appeared exhibiting no clustering and homogeneous distribution of Fe and Ni ions in the glass network. The data on Fe obtained are in good agreement with those from Mössbauer study of same glasses. After annealing glasses were partly devitrified and interpretation of XAFS data is strongly complicated due to Fe and Ni partitioning among crystalline and vitreous phases.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Remizov, M.B., Kozlov, P.V., Logunov, M.V., Koltyshev, V.K., Korchenkin, K.K., Problems Radiat. Safety (Russ.) [3] 17 (2014).Google Scholar
Brown, G.E. Jr., Waychunas, G.A., Ponader, C.W., Jackson, W.E., McKeown, D.A., J. Phys. C8. Suppl. no 12, 47, C8661 (1986).CrossRefGoogle Scholar
Binsted, N., Greaves, G.N., Henderson, C.M.B., J. Phys. C8. Suppl. no 12, 47, C8837 (1986).Google Scholar
Bugaev, L., Farges, F., Rusakova, E., Sokolenko, A., Latokha, Ya., Avakyan, L., Phys. Scripta. T115, 215 (2005).CrossRefGoogle Scholar
Galoisy, L., Calas, G., Cornier, L., Marcq, B., Thibault, M.H., Phys. Chem. Glasses, 46, 394 (2005).Google Scholar
Calas, G., Galoisy, L., Cornier, L., Ferlat, G., Lelong, G., Proc. Mater. Sci. 7, 23 (2014).CrossRefGoogle Scholar
Ray, C.S., Fang, X., Karabulut, M., Marasinghe, G.K., Day, D.E., J. Non-Cryst. Solids. 249, 1 (1999).CrossRefGoogle Scholar
Marasinghe, G.K., Karabulut, M., Ray, C.S., Day, D.E., Shuh, D.K., Allen, P.G., Saboungi, M.L., Grimsditch, M., Haeffner, D., J. Non-Cryst. Solids. 263&264, 146 (2000).Google Scholar
Karabulut, M., Marasinghe, G.K., Ray, C.S., Day, D.E., Waddill, G.D., Booth, C.H., Allen, P.G., Bucher, J.J., Caulder, D.L., Shuh, D.K., J. Non-Cryst. Solids. 306, 182 (2002).Google Scholar
Chernyshov, A.A., Veligzhanin, A.A., Zubavichus, Y.V., Nucl. Instrum. Meth. Phys. Res. A, 603, 95 (2009).Google Scholar
Ravel, B., Newville, M., J. Synchrotron Rad., 12, 537 (2005).Google Scholar
Newville, M., J. Phys.: Conf. Ser. 430, 012007-1-7 (2013).Google Scholar
Ankudinov, A.L., Rehr, J.J., Phys. Rev. B, 56, 1712 (1997).CrossRefGoogle Scholar
Berry, A.J., O’Neill, H.S.C., Jayasuriya, K.D., Campbell, S. J., Foran, G.J., Am. Mineral. 88, 967977 (2003)Google Scholar
Vashman, A.A., Pronin, I.S., Samsonov, V.E., Filin, V.M., Polyakov, A.S., Borisov, G.B., Borisova, Z.S., Volchek, Yu.Yu., Atomic Energy. 76, 449 (1994).Google Scholar
Lee, S.W., Ryoo, K.S., Kim, J.E., Lee, J.H., Kim, C.D., Hong, K.S., J. Mater. Sci. 29, 4577 (1994).Google Scholar
Wang, G., Wang, Y., Jin, B., Proc. SPIE Conf. 2287, 241 (1994).Google Scholar
Yu, X., Day, D.E., Long, G.L., Brow, R.K., J. Non-Cryst. Solids. 215, 21 (1997).Google Scholar
Stefanovsky, S.V., Stefanovsky, O.I., Remizov, M.B., Belanova, E.A., Kozlov, P.V., Glazkova, Ya. S., Sobolev, A.V., Presniakov, I.A., Kalmykov, S.N., Myasoedov, B.F., J. Nucl. Mater. 466, 142 (2015).Google Scholar
Minaev, A.A., Prokhorova, N.P., Kozlov, A.A., Gavrish, A.A., Shakh, G.E., Radiochemistry (Russ.). 20, 28 (1979).Google Scholar
Brezhneva, N.E., Minaev, A.A., Oziraner, S.N., Scientific Basis for Nuclear Waste Management. Vol. 1. Edited by McCarthy, G.J.. Plenum Press: New York and London. 1979. P. 4350.Google Scholar
Stefanovsky, S.V., Shvetsov, S.Y., Gorbunov, V.V., Lekontsev, A.V., Efimov, A.V., Knyazev, I.A., Stefanovsky, O.I., Zen’kovskaya, M.S., Roach, J.A., Ceram. Trans. 246, 251 (2014).Google Scholar
Stefanovsky, S.V., Myshkin, Y.V., Adamovich, D.V., Beliy, M.D., Adv. Sci. Technol. 94, 121 (2014).Google Scholar
Tischer, R.E., Drickamer, H.G., J. Chem. Phys. 37, 1554 (1962).CrossRefGoogle Scholar
Corrias, A., Gaskell, P.H., Musinu, A., Piccaluga, G., J. Non-Cryst. Solids. 192&193, 49 (1995).Google Scholar
Brendebach, B., Glaum, R., Funke, M., Reinauer, F., Hormes, J., Modrow, H., Z. Naturforsch. 60a, 449 (2005).Google Scholar
Glazkova, Y.S., Kalmykov, S.N., Presniakov, I.A., Sobolev, A.V., Stefanovsky, O.I., Stefanovsky, S.V., Vinokurov, S.E., Myasoedov, B.F., Doklady Phys. Chem. 463, 145 (2015).Google Scholar