Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T05:52:57.152Z Has data issue: false hasContentIssue false

What could be the Highest Hopping Mobility in Organic Thin-Film Transistors?

Published online by Cambridge University Press:  20 June 2016

Varsha Rani
Affiliation:
School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, INDIA
Akanksha Sharma
Affiliation:
School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, INDIA
Subhasis Ghosh*
Affiliation:
School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, INDIA
*
Get access

Abstract

Charge transport properties of pentacene have been investigated by a joint experimental and theoretical study. The growth of pentacene on the substrates shows mainly two different polymorphic phases, a bulk phase and a thin-film phase. The thin-film phase is crucial for the charge transport in two-terminal and three-terminal devices such as organic Schottky diodes and organic thin film transistors, respectively. Experimentally, mobility in two-terminal devices is less by five orders of magnitude than that in three-terminal devices. We show here that this difference can be explained on the basis of strong electronic coupling between molecular dimers located in the ab-plane and relatively weak coupling between the planes (along the c-axis).

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dimitrakopoulos, C. D. and Malenfant, P. R. L., Adv. Mater. 14, 99 (2002).3.0.CO;2-9>CrossRefGoogle Scholar
Matsubara, R., Ohashi, N., Sakai, M., Kudo, K., and Nakamura, M., Appl. Phys. Lett. 92, 242108 (2008).Google Scholar
Beaujuge, P. M. and Frechet, J. M. J. J. Am. Chem. Soc. 133, 20009 (2011).Google Scholar
Mas-Torrent, M., Rovira, C., Chem. Rev. 111, 4833 (2011).Google Scholar
Tanase, C., Meijer, E. J., Blom, P. W. M., and de Leeuw, D.M., Phys. Rev. Lett. 91, 216601 (2003).Google Scholar
Zorba, S., Shapir, Y., and Gao, Y., Phys. Rev. B 74, 245410 (2006).Google Scholar
Mott, N. F. and Gurney, R. W., “Electronic Processes in Ionic Crystals (Oxford University Press, Oxford, 1940)”.Google Scholar
Pasveer, W. F., Cottaar, J., Tanase, C., Coehoorn, R., Bobbert, P. A., and Blom, P. W. M., de Leeuw, D. M., and Michels, M. A. J., Phys. Rev. Lett. 94, 206601 (2005).Google Scholar
Sze, S. M., Physics of Semiconductor Devices, 2nd ed.; Wiley, New York, 1981.Google Scholar
Marcus, R. A., Rev. Mod. Phys. 65, 599 (1993).Google Scholar
Ashcroft, N. W. and Mermin, N. D., Solid State Physics (Holt, Rinehart and Winston, New York, 1988).Google Scholar
Frisch, M. J. et al. Gaussian 09, Revision C01. (Gaussian, Inc., 2009).Google Scholar
Lee, Choongkeun, Sohlberg, Karl, Chem. Phys. 367, 9 (2010).Google Scholar
Valeev, E.F., Coropceanu, V., da Silva Filho, D.A., Salman, S., Brédas, J.-L., J. Am. Chem. Soc. 128, 9882 (2006).Google Scholar
Ruhle, V., Junghans, C., Lukyanov, A., Kremer, K. and Andrienko, D., J. Chem. Theory Comput., 5, 3211 (2009).Google Scholar
Coropceanu, V., Cornil, J., Filho, D. A. da S., Olivier, Y., Silbey, R. and Bredas, J. L., Chem. Rev. 107, 926 (2007).Google Scholar
Jimison, L.H., Toney, M. F., McCulloch, I., Heeney, M., Salleo, A., Adv. Mater. 21, 1568 (2009).CrossRefGoogle Scholar