Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T16:57:54.009Z Has data issue: false hasContentIssue false

Wear Resistance under Non-Lubricated Condition of Nb-Containing TWIP Steel

Published online by Cambridge University Press:  16 November 2017

V.H. Mercado
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U-5”, Ciudad Universitaria, 58066Morelia, Michoacán, México. E-mail: [email protected], [email protected]
I. Mejía*
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U-5”, Ciudad Universitaria, 58066Morelia, Michoacán, México. E-mail: [email protected], [email protected]
Y. Salinas-Escutia
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U-5”, Ciudad Universitaria, 58066Morelia, Michoacán, México. E-mail: [email protected], [email protected]
A. Bedolla-Jacuinde
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U-5”, Ciudad Universitaria, 58066Morelia, Michoacán, México. E-mail: [email protected], [email protected]
*
Get access

Abstract

Twinning induced plasticity (TWIP) steels are one of the most attractive advanced high-strength steels for structural applications due to their unique combination of strength and ductility, which is associated with so-called “mechanical twinning”, where twins act as strong obstacles to the dislocation motion. In this context, Nb addition to TWIP steel increases the strength and refines grain size by nanoscale NbC precipitates. Nowadays, high-manganese TWIP steels are extensively studied. However, information in the specialized literature about their tribological properties is limited. This research work studies the wear behavior of high-manganese austenitic Fe–20Mn–1.5Si–1.5Al–0.4C TWIP steel microalloyed with Nb. The wear behavior was evaluated under non-lubricated sliding condition using the “pin-on-ring” technique. As-solution heat treated samples were worn under loads of 53, 104 and 154 N, and at sliding speeds of 0.22, 0.60 and 0.87 m/s. The wear resistance was evaluated in terms of the loss weight. Wear debris and worn surfaces were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (SEM-EDS) and X-ray diffraction (XRD). In general, results show that the wear resistance significantly improves as the sliding speed increases. On the other hand, Nb addition to present TWIP steel produces a slight increase of the wear resistance. Also, it was found that the oxide layer plays a significant role in the wear resistance behavior of this kind of steel.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hofmann, H., Becker, J. U., Göklü, S., Richter, H. and Thomas, I., Proc. of the 2nd Int. Conf. for Steels in Cars and Trucks SCT 2008, edited by Fuchsbauer, B. and Wieland, H.J., Germany, Verlag Stahleisen, Dusseldorf 2008, pp. 3442.Google Scholar
Grässel, O., Krüger, L., Frommeyer, G. and Meyer, L. W., J. Plasticity 16, 13921409 (2000).Google Scholar
Cornette, D., Cugy, P., Hildenbrand, A. and Bouzekri, M., Revue de Metallurgie 102, 905918 (2005).Google Scholar
Allain, S., Chateau, J. -P., and Bouaziz, O., Steel Res. Int. 73, 299300 (2002).Google Scholar
Gutierrez-Urrutia, I., Zaefferer, S. and Raabe, D., Mater. Sci. Eng. A 527, 35523560 (2010).Google Scholar
Bleck, W., and Phiu-on, K., Microstructure and Texture in Steels: And Other Materials, edited by Haldar, A., Suwas, S., and Bhattacharjee, D., E-Publishing, Springer Verlag, London, 2009, pp. 145146.Google Scholar
Salas-Reyes, A. E., Mejía, I., Bedolla-Jacuinde, A., Boulaajaj, A., Calvo, J. and Cabrera, J. M., Mater. Sci. Eng. A 611, 7789 (2014).Google Scholar
Reyes-Calderón, F., Mejía, I. and Cabrera, J. M., Mater. Sci. Eng. A 562, 4652 (2013).Google Scholar
Farias, M. C. M., Souza, R. M., Sinatora, A. and Tanaka, D. K., Wear 263, 773781 (2007).Google Scholar
Lim, S. C., Tribol. Int. 35, 717723 (2002).Google Scholar
Straffelini, G., Trabucco, D. and Molinari, A., Wear 250, 485491 (2001).Google Scholar
Jiang, J., Stott, F. H. and Stack, M. M., Wear 256, 973985.Google Scholar
Quinn, T. F. T., Sullivan, J. L. and Rowsan, D. M., Wear 94, 175191 (1984).Google Scholar
Stott, F. H., Tribol. Int. 31, 6171 (1998).Google Scholar
Inman, I. A., Datta, P. K., Du, H. L., Burnell-Gray, J. S., Pierzgalski, S. and Luo, Q., Tribol. Int. 38, 812818 (2005).Google Scholar
Antler, M., Wear 7, 181203 (1964).Google Scholar
Feng, I. M., J. Appl. Phys. 23, 10111019 (1952).Google Scholar
Mejía, I., Bedolla-Jacuinde, A. and Pablo, J. R., Wear 301, 590597 (2013).Google Scholar
Chen, R. Y. and Yuen, W. Y. D., Oxid. Met. 59, 433468 (2003).Google Scholar