Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T07:59:50.500Z Has data issue: false hasContentIssue false

Visualization of Self-sorted Local Atomic Motifs in disordered solids

Published online by Cambridge University Press:  08 May 2018

Aly Rahemtulla*
Affiliation:
Department of Physics, University of Guelph, Guelph, Ontario, Canada
Bruno Tomberli
Affiliation:
Department of Physics, Capilano University, North Vancouver, British Columbia, Canada
Stefan Kycia
Affiliation:
Department of Physics, University of Guelph, Guelph, Ontario, Canada
*
Get access

Abstract

The structural descriptions of even the most basic amorphous materials are under considerable debate. In this work, an intuitive computational technique has been developed to construct 3D statistical density maps to directly visualize and identify local atomic structures from simple monatomic amorphous germanium (a-Ge) to complex multi-atom systems such as copper zirconium metallic glass. We show motifs in copper zirconium that are unresolvable through traditional tools such as Voronoi indexing. This self-sorted local atomic motif (SLAM) method builds upon the Kabsch algorithm incorporating techniques in computer vision to produce least-squares optimized 3D density maps. Simultaneously, the SLAM method incorporates self-contained categorization to define local motifs based upon atomic structures. We present the methodology of the SLAM method and also present resulting motifs comparing models a-Ge and demonstrate its broad capability on metallic glass.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wright, a. C. and Thorpe, M.F., Phys. Status Solidi 250, 931 (2013).CrossRefGoogle Scholar
Proffen, T., Petkov, V., Billinge, S.J.L., and Vogt, T., Zeitschrift Für Krist. - Cryst. Mater. 217, 47 (2002).Google Scholar
Vink, R.L.C., Barkema, G.T., Van der Weg, W.F., and Mousseau, N., J. Non. Cryst. Solids 282, 248 (2001).CrossRefGoogle Scholar
Polk, D., Non, J.. Cryst. Solids 5, 365 (1971).CrossRefGoogle Scholar
Wooten, F., Winer, K., and Weaire, D., Phys. Rev. Lett. 54, 1392Google Scholar
1985). Borisenko, K.B., Haberl, B., Liu, A.C.Y., Chen, Y., Li, G., Williams, J.S., Bradby, J.E., Cockayne, D.J.H., and Treacy, M.M.J., Acta Mater. 60, 359 (2012).CrossRefGoogle Scholar
Trady, S., Mazroui, M., Hasnaoui, A., and Saadouni, K., J. Non. Cryst. Solids (2016).Google Scholar
Sheng, H.W., Luo, W.K., Alamgir, F.M., Bai, J.M., and Ma, E., Nature 439, 419 (2006).CrossRefGoogle Scholar
Bhat, M.H., Molinero, V., Soignard, E., Solomon, V.C., Sastry, S., Yarger, J.L., and a Angell, C., Nature 448, 787 (2007).CrossRefGoogle Scholar
Zemp, J., Celino, M., Schönfeld, B., and Löffler, J.F., Phys. Rev. Lett. 115, 1 (2015).CrossRefGoogle Scholar
Yu, Q., Wang, X.D., Lou, H.B., Cao, Q.P., and Jiang, J.Z., Acta Mater. 102, 116 (2016).CrossRefGoogle Scholar
Cairns, A.B. and Goodwin, A.L., Chem. Soc. Rev. 42, 4881 (2013).CrossRefGoogle Scholar
Queen, D.R., Liu, X., Karel, J., Jacks, H.C., Metcalf, T.H., and Hellman, F., J. Non. Cryst. Solids 426, 19 (2015).CrossRefGoogle Scholar
Liu, X., Queen, D.R., Metcalf, T.H., Karel, J.E., and Hellman, F., Phys. Rev. Lett. 113, 1 (2014).Google Scholar
Le Roux, S., Petkov, V., and IUCr, J. Appl. Crystallogr. 43, 181 (2010).CrossRefGoogle Scholar
Faken, D. and Jónsson, H., Comput. Mater. Sci. 2, 279 (1994).CrossRefGoogle Scholar
Steinhardt, P.J., Nelson, D.R., and Ronchetti, M., Phys. Rev. B 28, 784 (1983).CrossRefGoogle Scholar
Brostow, W., Chybicki, M., Laskowski, R., and Rybicki, J., Phys. Rev. B 57, 113448 (1998).CrossRefGoogle Scholar
Fukunaga, T., Itoh, K., Otomo, T., Mori, K., Sugiyama, M., Kato, H., Hasegawa, M., Hirata, A., Y, H.., and Hannon, A.C., Mater. Trans. 48, 1698 (2007).CrossRefGoogle Scholar
Fang, X.W., Wang, C.Z., Yao, Y.X., Ding, Z.J., and Ho, K.M., Phys. Rev. B - Condens. Matter Mater. Phys. 82, 1 (2010).Google Scholar
Tomberli, B., Rahemtulla, A., Kim, E., Roorda, S., and Kycia, S., Phys. Rev. B 92, 64204 (2015).CrossRefGoogle Scholar
Rahemtulla, A., Tomberli, B., and Kycia, S., J. Appl. Crystallogr. (2018).Google Scholar
Kabsch, W. and IUCr, Acta Crystallogr. Sect. A 32, 922 (1976).Google Scholar
Barkema, G.T. and Mousseau, N., Phys. Rev. B 62, 4985 (2000).CrossRefGoogle Scholar
Hinkle, A.R., Rycroft, C.H., Shields, M.D., and Falk, M.L., Phys. Rev. E 95, 53001 (2017).CrossRefGoogle Scholar
Laaziri, K., Kycia, S., Roorda, S., Chicoine, M., Robertson, J.L., Wang, J., and Moss, S.C., Phys. Rev. Lett. 82, 3460 (1999).CrossRefGoogle Scholar
Roorda, S., Martin, C., Droui, M., Chicoine, M., Kazimirov, a., and Kycia, S., Phys. Rev. Lett. 255501, 1 (2012).Google Scholar