Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T22:48:38.299Z Has data issue: false hasContentIssue false

A video imaging method for time-dependent measurements of molecular mass transfer and biofilm dynamics in microchannels

Published online by Cambridge University Press:  16 May 2016

M. Parvinzadeh Gashti
Affiliation:
Département de Chimie, Université Laval, Québec, QC, G1V 0A6, Canada
M. Zarabadi
Affiliation:
Département de Chimie, Université Laval, Québec, QC, G1V 0A6, Canada
J. Greener*
Affiliation:
Département de Chimie, Université Laval, Québec, QC, G1V 0A6, Canada
*
*Corresponding email: [email protected]
Get access

Abstract

The biomass accumulation and movement of biofilms in a microchannel is monitored by optical microscopy. First, the average optical density of the biofilm is monitored in time as a measure of biofilm thickness and structural heterogeneity. These results are used as inputs to calculate changing flow velocities due to resulting excluded volume. Next the displacement velocity of moving biofilm segments was recorded in different places in the microchannel. Quantitative analysis by a particle tracking routine showed differences in displacement velocity near and far from the microchannel corner, which is believed to be related to the local shear forces which vary depending on the height of the biofilm segment and its position in the microchannel. The effect of changing biofilm thickness and different hydrodynamic environments in the microchannel are then discussed in terms of their effects on molecular loading rates. Finally, a demonstration of a flow-templated growth approach as a means to homogenize the growth environment.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Klapper, I., Rupp, C.J., Cargo, R., Purvedorj, B., Stoodley, P., Biotechnol. Bioeng., 2002, 80, 289–96CrossRefGoogle Scholar
Shaw, T., Winston, M., Rupp, C.J., Klapper, I., Stoodley, P., Phys. Rev. Lett., 2004, 93, 098102.CrossRefGoogle Scholar
Halan, B., Buehler, K., Schmid, A., Trends Biotechnol., 2012, 30, 453–65.CrossRefGoogle Scholar
Li, X.Z., Hauer, B., Rosche, B., J. Microbiol Biotechnol., 2013, 23, 195204.CrossRefGoogle Scholar
Høiby, N., Ciofu, O., Bjarnsholt, T., Future Microbiol., 2010, 5, 1663–74.Google Scholar
Billings, N., Birjiniuk, A., Samad, T.S., Doyle, P.S., Ribbeck, K., Rep. Prog. Phys., 2015, 78, 036601.Google Scholar
Bester, E., Wolfaardt, G.M., Aznaveh, N.B., Greener, J., Int. J. Mol. Sci., 2013, 14, 2196521982.Google Scholar
Vigolo, D., Al-Housseiny, T.T, Shen, Y., Akinlawon, F.O., Al-Housseiny, S.T., Hobson, R.K., Sahu, A., Bedkowski, K.I., DiChristina, T.J., Stone, H., Phys. Chem. Chem. Phys., 2014, 16, 1253512543.CrossRefGoogle Scholar
Parvinzadeh Gashti, M., Asselin, J., Barbeau, J., Boudreau, D., Greener, J., Lab Chip, 2016, DOI: 10.1039/C5LC01540E Google Scholar
Das, S. and Kumar, A., Sci. Rep., 2014, 4, 7126.Google Scholar
Stoodley, P., Cargo, R., Rupp, C.J., Wilson, S., Klapper, I., J. Indust. Microbiol. Biotechnol., 2002, 29, 361–7.Google Scholar
Rupp, C.J., Fux, C.A., Stoodley, P., Appl Environ Microbiol., 2005, 71, 21752178.Google Scholar
Karimi, A., Karig, D., Kumar, A., and Ardekani, A. M., Lab Chip, 2015, 15, 23.Google Scholar
Schneider, C.A., Rasband, W.S., Eliceiri, K.W., Nature Methods, 2012, 9, 671675.Google Scholar
Meijering, E., Dzyubachyk, O., Smal, I., Methods for Cell and Particle Tracking, Methods in Enzymology, 2012, 504, 183200.Google Scholar
Bakke, R., Olsson, P.Q., J. Microbiol. Methods, 1986, 5, 9398.CrossRefGoogle Scholar
Trulear, M.G., Characklis, W.G., J. WPCF, 1982, 54, 12881301.Google Scholar
Bakke, R., Kommedal, R., Kalvenes, S., J. Microbiol. Methods, 2001, 44, 1326.Google Scholar
Dreschera, K., Shenb, Y., Basslera, B.L., Stone, H. A.., Proc. Natl. Acad. Sci. USA, 2013, 110, 41494150.Google Scholar
Parvinzadeh Gashti, M., Bellavance, J., Kroukamp, M., Wolfaardt, G., Taghavi, S. M., Greener, J., Biomicrofluidics, 2015, 9, 041101.Google Scholar
Taherzadeh, D., Picioreanu, C., Horn, H., Biophys. J. 2012, 102, 14831492.CrossRefGoogle Scholar
Babaei Aznaveh, N., Safdar, M., Wolfaardt, G., Greener, J., Lab Chip, 2014, 14, 26662672.Google Scholar
Sandt, C., Barbeau, J., Gagnon, M.A., Lafleur, M., J. Antimicrob. Chemother., 2007, 60, 1281–7.Google Scholar