Article contents
Ultra-thin LiF Layer As The Electron Collector For a-Si:H Based Photovoltaic Cell
Published online by Cambridge University Press: 07 March 2017
Abstract
An ultra-thin LiF layer in conjunction with an Al layer is employed as the electron collector for the a-Si:H based single-junction thin film photovoltaic cell. The cell has the structure of boron doped μ-SiOx (hole collector) - intrinsic a-Si:H (photoactive layer) - LiF / Al (electron collector and back electrode). The substrate used is U type Asahi glass, which is also acting as the transparent front electrode. For the cell with the 1.5 nm thick LiF layer, annealed at 120°C, the open current voltage (VOC) of 0.936 V, the short current density (JSC) of 13.598 mA/cm2, and the fill factor (FF) of 0.690 are achieved. The JSC and VOC values are comparable to the values measured for the a-Si:H based p-i-n reference cell, but the FF value is found to be lower, which is attributed to the losses due to recombination at the intrinsic a-Si:H / LiF / Al junction. The current versus voltage measurements are carried out under the standard test conditions. The JSC values are corrected according to the external quantum efficiency measurements of the cells in the AM1.5 spectrum region between 270 nm and 800 nm.
Keywords
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2017
References
REFERENCES
- 3
- Cited by