Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T05:21:11.110Z Has data issue: false hasContentIssue false

Ultrahigh Rate Supercapacitor based on Self-Standing Carbon Nanotubes Supported Vertically Aligned MoS2 Sheets

Published online by Cambridge University Press:  01 September 2020

Pranjala Tiwari*
Affiliation:
Nanoscience Laboratory, Indian Institute of Technology Roorkee, Roorkee247667, India.
Dawid Janas
Affiliation:
Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
Ramesh Chandra*
Affiliation:
Nanoscience Laboratory, Indian Institute of Technology Roorkee, Roorkee247667, India.
*
*Corresponding author E-mail address:[email protected], [email protected]
*Corresponding author E-mail address:[email protected], [email protected]
Get access

Abstract

Recently, two-dimensional layered structures, especially MoS2 has come out as the most investigated electrode material for batteries and supercapacitors, possessing well preserved in-plane covalent bonding, leading to extraordinary mechanical elasticity within the layers as well as outstanding firmness along the c-axis. The present work is aimed to fabricate vertically aligned edge exposed molybdenum disulfide nanoflakes on the surface of the self-standing hydrophilic carbon nanotubes, using a two-step process involving a chemical route and magnetron sputtering techniques for flexible supercapacitor application. These hybrid heterostructures have been characterized using XRD, FESEM, and cyclic voltammetry. In the aqueous electrolyte of 1M Li2SO4, the symmetric device revealed very high areal capacitance of 182.5 mF/cm2 and 155 mF/cm2, at scan rates of 2 and 5 mV/s, respectively. The device shows high energy density of 365 mWh/cm2.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tiwari, P., Malik, G., and Chandra, R., J. of Appl. Phys., 195106, 2018, doi: 10.1063/1.5053875.CrossRefGoogle Scholar
Tiwari, P., Jaiswal, J., and Chandra, R., 3rd Int. Conf. Condens. Matter Appl. Phys., 2220, 090007, 2020, doi: 10.1063/5.0001146.Google Scholar
Majee, B. P., Singh, A., Prakash, R., and Mishra, A. K., J. Phys. Chem. Lett., 11, 12681275, 2020, doi: 10.1021/acs.jpclett.9b03726.CrossRefGoogle Scholar
Jaiswal, J., Sanger, A., Tiwari, P., and Chandra, R., Sensors Actuators B. Chem., 127437, 2019, doi: 10.1016/j.snb.2019.127437.Google Scholar
Zhang, B. et al. , Electrochim. Acta, vol. 217, pp. 18, 2016, doi: 10.1016/j.electacta.2016.09.059.Google Scholar
Yang, C., Chen, Z., Shakir, I., Xu, Y., and Lu, H., 9 (4), 951962, 2016, doi: 10.1007/s12274-016-0983-3.CrossRefGoogle Scholar
Ghasemi, F., Jalali, M., Abdollahi, A., Mohammadi, S., Sanaee, Z., and Mohajerzadeh, S., RSC Adv., 7 (83), 5277252781, 2017, doi: 10.1039/c7ra09060a.CrossRefGoogle Scholar
Sari, F. N. I. and Ting, J. M., Sci. Rep., 7, 114, 2017, doi: 10.1038/s41598-017-05805-z.CrossRefGoogle Scholar
Fu, G. et al. , 224, 3645, 2017, doi: 10.1016/j.synthmet.2016.12.022.CrossRefGoogle Scholar
Tiwari, P., Patel, K., Krishnia, L., Kumari, R., and Tyagi, P. K., Comput. Mater. Sci., 136, 102108, 2017, doi: 10.1016/j.commatsci.2017.04.026.CrossRefGoogle Scholar
Janas, D., Rdest, M., and Koziol, K. K. K., Mater. Des., 121, 119125, 2017, doi:10.1016/j.matdes.2017.02.062.CrossRefGoogle Scholar
Su, H. et al. , Nanomaterials 2020, 10, 1141; doi:10.3390/nano10061141.CrossRefGoogle ScholarPubMed
Cheng, B. et al. , Nanoscale Research Letters, 14:66, doi.org/10.1186/s11671-019-2902-5.CrossRefGoogle Scholar
Bissett, M. A., Kinloch, I. A., and Dryfe, Robert A. W., ACS Appl. Mater. Interfaces 2015, 7, 1738817398, DOI: 10.1021/acsami.5b04672.CrossRefGoogle Scholar
Xiao, Y., Huang, L., Zhang, Q., Xu, S., Chen, Qi, and Shi, W., Applied Physics Letters 107, 013906, 2015, doi: 10.1063/1.4926570.CrossRefGoogle Scholar
Dutta, S. and De, S., Materials Today: Proceedings 5, 97719775, 2018.Google Scholar
Choudhary, N. et al. , J. Mater. Chem. A, 3, 24049-24054, 2015, doi: 10.1039/C5TA08095A.CrossRefGoogle Scholar