Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T13:15:42.325Z Has data issue: false hasContentIssue false

Tribological and mechanical characterization of PMMA/HAp nanocomposites obtained by free- radical polymerization

Published online by Cambridge University Press:  04 December 2018

Virginia Campos-Sanabria
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Celaya, Apartado Postal 57, 38010-Celaya, Guanajuato, México
María T. Hernández-Sierra
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Celaya, Apartado Postal 57, 38010-Celaya, Guanajuato, México
Micael G. Bravo-Sánchez
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Celaya, Apartado Postal 57, 38010-Celaya, Guanajuato, México
Luis D. Aguilera-Camacho
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Celaya, Apartado Postal 57, 38010-Celaya, Guanajuato, México
J. S. García-Miranda
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Celaya, Apartado Postal 57, 38010-Celaya, Guanajuato, México
Karla J. Moreno*
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Celaya, Apartado Postal 57, 38010-Celaya, Guanajuato, México
*
Get access

Abstract

Poly (methyl methacrylate)/hydroxyapatite (PMMA/HAp) nanocomposites with HAp nanoparticles content of 12 wt.% were obtained by free-radical polymerization synthesis. Three different concentrations of benzoyl peroxide (PBO) of 3, 6, and 12 wt.% were studied. The results showed that the concentration of PBO has an effect on the performance of composites. In particular, the nanocomposite with the highest concentration of PBO presented the best mechanical and tribological behavior, as well as the lowest values of water absorption and porosity percent.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dalby, M.J., Di Silvio, L., Harper, E.J., and Bonfield, W., J. Mater. Sci. Mater. Med. 10(12), 793796 (1999).CrossRefGoogle Scholar
Mousa, W.F., Kobayashi, M., Shinzato, S., et al., Biomaterials 21(21), 21372146 (2000).CrossRefGoogle Scholar
Parra, C., González, G., and Albano, C., Macromol. Symp. 286(1), 6069 (2009).CrossRefGoogle Scholar
Cucuruz, A.T., Andronescu, E., Ficai, A., et al., Int. J. Pharm. 510(2), 516523 (2016).CrossRefGoogle Scholar
Tihan, T.G., Ionita, M.D., Popescu, R.G., and Iordachescu, D., Mater. Chem. Phys. 118(2-3), 265269 (2009).CrossRefGoogle Scholar
Kim, S.B., Kim, Y.J., Yoon, T.L., et al., Biomaterials 25(26), 57155723 (2004).CrossRefGoogle Scholar
Pahlevanzadeh, F., Bakhsheshi-Rad, H.R., and Hamzah, E., J. Mech. Behav. Biomed. Mater. 82, 257267 (2018).CrossRefGoogle Scholar
Wang, F., Xiong, Y., Ning, C., Sun, J., and Zeng, Y., J. Alloys Compd. 728, 189195 (2017).CrossRefGoogle Scholar
Karthick, R., Sirisha, P., and Sankar, M.R., Procedia Mater. Sci. 6, 19892000 (2014).CrossRefGoogle Scholar
Navarro, C.H., Moreno, K.J., Chávez-Valdez, A., et al., Wear 282-283, 7680 (2012).CrossRefGoogle Scholar
Brostow, W. and Hagg Lobland, H.E., Materials: Introduction and Applications, (John Wiley & Sons, New York, 2017) pp. 391421.Google Scholar
Moreno, K.J., García-Miranda, J.S., Hernández-Navarro, C., et al., J. Compos. Mater. 49(11),13451353 (2015).CrossRefGoogle Scholar
Slouf, M., Vackova, T., Nevoralova, M., and Pokorny, D., Polym. Test. 41, 191197 (2015).CrossRefGoogle Scholar
Alhareb, A.O., Akil, H.M., and Ahmad, Z.A., Saudi J. Dent. Res. 8(1-2), 2634 (2017).CrossRefGoogle Scholar
Myshkin, N.K., Petrokovets, M.I., and Kovalev, A.V., Tribol. Int. 38(11-12), 910921 (2006).CrossRefGoogle Scholar