Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-02T22:14:37.516Z Has data issue: false hasContentIssue false

Transmittance, Absorbance and Emission of Ga related Defects in Ga-doped ZnO Nanocrystal Films

Published online by Cambridge University Press:  29 October 2020

Tetyana V. Torchynska*
Affiliation:
Instituto Politécnico Nacional, ESFM, México City, 07738, México
Brahim El Filali
Affiliation:
Instituto Politécnico Nacional, UPIITA, México City, 07320, México
Jose L. Casas Espinola
Affiliation:
Instituto Politécnico Nacional, ESFM, México City, 07738, México
Chetzyl I. Ballardo Rodriguez
Affiliation:
Instituto Politécnico Nacional, UPIITA, México City, 07320, México
Georgiy Polupan
Affiliation:
Instituto Politécnico Nacional, ESIME México City, 07738, México
Lyudmyla Shcherbyna
Affiliation:
V. Lashkaryov Institute of Semiconductor Physics at NASU, Kyiv, 03028, Ukraine
*
Corresponding author E mail: [email protected]
Get access

Abstract

ZnO films grown by ultrasonic spray pyrolysis with different Ga contents in the range of 1.0-6.5 at% on quartz substrates have been studied. The ZnO:Ga films were annealed at 400°C for 4h in a nitrogen flow. Morphology, emission, transmittance, absorbance and electrical resistivity were controlled. It is revealed that with a small content of Ga ≤ 4.0 at%, the ZnO:Ga films maintain a flat morphology, their transmittance increases to 86% together with the increase of the ZnO optical bandgap to 3.28 eV and the intensity enlargement of the near band edge (NBE) emission band A (3.188 eV). Furthermore, the new NBE emission band B (3.072 eV) appears in photoluminescence (PL) spectra at Ga contents ≥ 1.5 at%. Simultaneously, the process of decreasing electrical resistivity becomes saturating. The last effect is attributed to the self-compensation effect in n-type ZnO:Ga films related to the generation of acceptor type complexes (VZn2- - GaZn+). The thermal quenching of the PL intensities of the A and B PL bands is studded at 18-290K, which allows assigning the PL band A to the LO-phonon replica of the free exciton emission and the band B to the emission in donor-acceptor pairs: shallow donors - acceptor complexes (VZn2- - GaZn+). The NBE emission intensity drops and the ZnO optical bandgap demonstrates the shift to a lower energy at Ga doping up to ≤ 6.5 at%. Optimal Ga concentrations have been estimated to produce ZnO:Ga films with flat morphology, high optical transmittance and bright NBE emission.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Janotti, A., Van de Walle, C.G., Rep. Prog. Phys. 72 (2009) 126501.CrossRefGoogle Scholar
2.Zebbar, N., Chabane, L., Gabouze, N., Kechouane, M., Trari, M., Aida, M.S., Belhousse, S., Hadj Larbi, F., Thin Solid Films 605 (2016) 89.CrossRefGoogle Scholar
3.Torchynska, T.V., B. El Filali, J. Lumin. 149 (2014) 54.CrossRefGoogle Scholar
4.Wienke, J., van der Zanden, B., Tijssen, M., Zeman, M., Sol. Energy Mater. Sol. Cells 92 (2008) 884.CrossRefGoogle Scholar
5.Look, D.C., Farlow, G.C., Reunchan, P., Limpijumnong, S., Zhang, S.B., Nordlund, K., Phys. Rev. Lett. 95 (2005) 255502.CrossRefGoogle Scholar
6.Shi, G.A., Saboktakin, M. and Stavola, M., Appl. Phys. Lett. 85 (2004) 5601.CrossRefGoogle Scholar
7.Li, Q., Liu, X., Gu, M., Huang, Sh., Zhang, J., Liu, B., Ni, Ch., Hu, Y., Zhao, Sh., Wu, Q., Mater. Res. Bull. 86 (2017) 173.CrossRefGoogle Scholar
8.Wen, X., Han, Y., Yao, Ch., Zhang, K., Li, J, Sun, W., Li, Q., Zhang, M., Wu, J-D, Opt. Mater. 77 (2018) 67.CrossRefGoogle Scholar
9.Chaabouni, F., Khalfallah, B., Abaab, M., Thin Solid Films 617 (2016) 95.CrossRefGoogle Scholar
10.Alamdaria, S., Jafar Tafreshia, M., Sasani Ghamsari, M., Mater. Lett. 197 (2017) 94.CrossRefGoogle Scholar
11.Wired Chemist. Metallic, Covalent and Ionic Radii(r)*. Available at http://www.wiredchemist.com/chemistry/data/metallic-radii (Accessed 20 October 2020).Google Scholar
12.Look, D. C., Leedy, K. D., Vines, L., Svensson, B. G. and Zubiaga, A., Phys. Rev. B, 84 (2011) 115202.CrossRefGoogle Scholar
13.Yang, S.H., Tsai, M.W., Lin, J. W., Chiang, P.J., Appl. Surf. Scien. 256 (2015) 48.CrossRefGoogle Scholar
14.Devasia, S., Athma, P.V., Shaji, M., Santhosh Kumar, M.C., Anila, E.I., Physica B, 533 (2018) 83.CrossRefGoogle Scholar
15.Yu, Ch., Li, R., Li, T., Dong, H., Jia, W., Xu, B., Superlat. Microstruct. 120 (2018) 298.CrossRefGoogle Scholar
16.Velázquez Lozada, E., Torchynska, T.V., Casas Espinola, J.L., Pérez Millan, B., Physica B, 453 (2014) 111.CrossRefGoogle Scholar
17.Torchynska, T.V., Khomenkova, L.I., Korsunska, N.E., Sheinkman, M.K., Physica B, 273-274 (1999) 955.Google Scholar
18.Uklein, A. V., Multian, V. V., Kuz'micheva, G. M., Linnik, R. P., Ya, V.. Gayvoronsk, Opt. Mater. 84 (2018) 738.CrossRefGoogle Scholar
19.Ziabari, A.A. and Rozati, S.M., Physica B. 407 (2012) 4512.CrossRefGoogle Scholar
20.Kumar, N., Srivastava, A., Opto-Electron. Rev. 26 (2018) 1-10.CrossRefGoogle Scholar
21.Torchinskaya, T.V., Korsunskaya, N.E., Dzumaev, B., Bulakh, B.M., Smiyan, O.D., Kapitanchuk, A.L., Antonov, S.O, Semiconductors, 30 (1996) 792.Google Scholar
22.Khan, E.H., Weber, M.H., McCluskey, M.D., Phys. Rev. Lett. 111 (2013) 017401.CrossRefGoogle Scholar
23.Diaz Cano, A., El Filali, B., Torchynska, T., Casas Espinola, J.L., Physica E 51 (2013) 24.CrossRefGoogle Scholar
24.Son, N.T., Isoya, J., Ivanov, I.G., Oshima, T. and Janzén, E, J. Physics: Condens. Matter, 25 (2013) 335804.Google Scholar
25.Ahn, C.H., Mohanta, S.K., Lee, N.E., Cho, H.K., Appl. Phys. Lett. 94 (2009) 271904.Google Scholar
26.Dybiec, M., Borkovska, L., Ostapenko, S., Torchynska, T. V., Casas Espinola, J. L., Stintz, A. and Malloy, K. J., Appl. Surf. Scien. 252 (2006) 5542.CrossRefGoogle Scholar
27.McCluskey, M. D., in Semicond. Semimetals, 1st ed. Elsevier Inc., 2015, pp. 279-313.Google Scholar
28.Agura, H., Suzuki, A., Matsushita, T., Aoki, T., Okuda, M., Thin Solid Films 445 (2003) 263.CrossRefGoogle Scholar
29.Yu, Ch., Li, R., Li, T., Dong, H., Jia, W. , Xu, B., Superlat. Microstruct. 120 (2018) 298.CrossRefGoogle Scholar
30.Richter, R.S., Yaya, A., Dodoo-Arhin, D., Agyel-Tuffour, B., Musembi, R.J., Onwona-Agyeman, B., Oriental J. Chemistry, 34 (2018) 2325.CrossRefGoogle Scholar
31.Noh, J.Y., Kim, H., Kim, Y.S. and Park, C. H., J. Appl. Phys. 113 (2013) 153703.CrossRefGoogle Scholar