Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T00:17:14.575Z Has data issue: false hasContentIssue false

Torsional Fiber Actuators from Shape-memory Polymer

Published online by Cambridge University Press:  29 November 2018

Muhammad Farhan
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513Teltow, Germany; Institute of Chemistry, University of Potsdam, 14476Potsdam, Germany
Tobias Rudolph
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513Teltow, Germany;
Karl Kratz
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513Teltow, Germany;
Andreas Lendlein*
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513Teltow, Germany; Institute of Chemistry, University of Potsdam, 14476Potsdam, Germany
*
*Corresponding author: [email protected]
Get access

Abstract:

Humanoid robots, prosthetic limbs and exoskeletons require soft actuators to perform their primary function, which is controlled movement. In this work, we explored whether crosslinked poly[ethylene-co-(vinyl acetate)] (cPEVA) fibers, with different vinyl acetate (VA) content can serve as torsional fiber actuators, exhibiting temperature controlled reversible rotational changes. Broad melting transitions ranging from 50 to 90 °C for cPEVA18-165 or from 40 to 80 °C for cPEVA28-165 fibers in combination with complete crystallization at temperatures around 10 °C make them suitable actuating materials with adjustable actuation temperature ranges between 10 and 70 °C during repetitive cooling and heating. The obtained fibers exhibited a circular cross section with diameters around 0.4±0.1 mm, while a length of 4 cm was employed for the investigation of reversible rotational actuation after programming by twist insertion using 30 complete rotations at a temperature above melting transition. Repetitive heating and cooling between 10 to 60 °C or 70 °C of one-end-tethered programmed fibers revealed reversible rotations and torsional force. During cooling 3±1 complete rotations (Δθr = + 1080±360°) in twisting direction were observed, while 4±1 turns in the opposite direction (Δθr = - 1440±360°) were found during heating. Such torsional fiber actuators, which are capable of approximately one rotation per cm fiber length, can serve as miniaturized rotary motors to provide rotational actuation in futuristic humanoid robots.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mirvakili, S. M., Pazukha, A., Sikkema, W., Sinclair, C. W., Spinks, G. M., Baughman, R. H. and Madden, J. D. W., Adv Funct Mater 23 (35), 4311-4316 (2013).CrossRefGoogle Scholar
Stoychev, G. V. and Ionov, L., Acs Appl Mater Inter 8 (37), 24281-24294 (2016).CrossRefGoogle Scholar
Carpi, F., Kornbluh, R., Sommer-Larsen, P. and Alici, G., Bioinspir Biomim 6 (4), 1748-3182 (2011).Google Scholar
Bar-Cohen, Y., Proc Spie 9056 (2014).Google Scholar
Haines, C. S., Lima, M. D., Li, N., Spinks, G. M., Foroughi, J., Madden, J. D. W., Kim, S. H., Fang, S. L., de Andrade, M. J., Goktepe, F., Goktepe, O., Mirvakili, S. M., Naficy, S., Lepro, X., Oh, J. Y., Kozlov, M. E., Kim, S. J., Xu, X. R., Swedlove, B. J., Wallace, G. G. and Baughman, R. H., Science 343 (6173), 868-872 (2014).CrossRefGoogle Scholar
Tondu, B., Ippolito, S., Guiochet, J. and Daidie, A., Int J Robot Res 24 (4), 257-274 (2005).CrossRefGoogle Scholar
Shi, Q. W., Li, J. H., Hou, C. Y., Shao, Y. L., Zhang, Q. H., Li, Y. G. and Wang, H. Z., Chem Commun 53 (81), 11118-11121 (2017).CrossRefGoogle Scholar
Kwon, C. H., Chun, K. Y., Kim, S. H., Lee, J. H., Kim, J. H., Lima, M. D., Baughman, R. H. and Kim, S. J., Nanoscale 7 (6), 2489-2496 (2015).CrossRefGoogle ScholarPubMed
Lima, M. D., Li, N., de Andrade, M. J., Fang, S. L., Oh, J., Spinks, G. M., Kozlov, M. E., Haines, C. S., Suh, D., Foroughi, J., Kim, S. J., Chen, Y. S., Ware, T., Shin, M. K., Machado, L. D., Fonseca, A. F., Madden, J. D. W., Voit, W. E., Galvao, D. S. and Baughman, R. H., Science 338 (6109), 928-932 (2012).CrossRefGoogle Scholar
Foroughi, J., Spinks, G. M., Wallace, G. G., Oh, J., Kozlov, M. E., Fang, S. L., Mirfakhrai, T., Madden, J. D. W., Shin, M. K., Kim, S. J. and Baughman, R. H., Science 334 (6055), 494-497 (2011).CrossRefGoogle Scholar
Koerner, H., Price, G., Pearce, N. A., Alexander, M. and Vaia, R. A., Nat Mater 3 (2), 115-120 (2004).CrossRefGoogle Scholar
Miaudet, P., Derre, A., Maugey, M., Zakri, C., Piccione, P. M., Inoubli, R. and Poulin, P., Science 318 (5854), 1294-1296 (2007).CrossRefGoogle Scholar
Mirvakili, S. M. and Hunter, I. W., Acs Appl Mater Inter 9 (19), 16321-16326 (2017).CrossRefGoogle Scholar
Aziz, S., Foroughi, J., Brown, H. R. and Spinks, G. M., J Polym Sci Pol Phys 54 (13), 1278-1286 (2016).CrossRefGoogle Scholar
Kim, S. H., Lima, M. D., Kozlov, M. E., Haines, C. S., Spinks, G. M., Aziz, S., Choi, C., Sim, H. J., Wang, X. M., Lu, H. B., Qian, D., Madden, J. D. W., Baughman, R. H. and Kim, S. J., Energ Environ Sci 8 (11), 3336-3344 (2015).CrossRefGoogle Scholar
Kim, S. H., Sim, H. J., Hyeon, J. S., Suh, D., Spinks, G. M., Baughman, R. H. and Kim, S. J., Sci Rep-Uk 8 (2018).Google Scholar
Yuan, J. K. and Poulin, P., Science 343 (6173), 845-846 (2014).CrossRefGoogle ScholarPubMed
Chung, T., Rorno-Uribe, A. and Mather, P. T., Macromolecules 41 (1), 184-192 (2008).CrossRefGoogle Scholar
Zotzmann, J., Behl, M., Hofmann, D. and Lendlein, A., Advanced Materials 22 (31), 3424-3429 (2010).CrossRefGoogle Scholar
Yang, Q. X., Fan, J. Z. and Li, G. Q., Appl Phys Lett 109 (18) (2016).Google Scholar
Gong, T., Zhao, K., Wang, W. X., Chen, H. M., Wang, L. and Zhou, S. B., J Mater Chem B 2 (39), 6855-6866 (2014).CrossRefGoogle Scholar
Meng, Y., Jiang, J. S. and Anthamatten, M., Acs Macro Lett 4 (1), 115-118 (2015).CrossRefGoogle Scholar
Lendlein, A., Science Robotics 3 (18) (2018).CrossRefGoogle Scholar
Behl, M., Kratz, K., Noechel, U., Sauter, T. and Lendlein, A., P Natl Acad Sci USA 110 (31), 12555-12559 (2013).CrossRefGoogle Scholar
Behl, M., Kratz, K., Zotzmann, J., Nöchel, U. and Lendlein, A., Advanced Materials 25 (32), 4466-4469 (2013).CrossRefGoogle Scholar
Farhan, M., Chaganti, S. R., Nochel, U., Kratz, K. and Lendlein, A., Polym Advan Technol 26 (12), 1421-1427 (2015).CrossRefGoogle Scholar
Farhan, M., Rudolph, T., Nochel, U., Yan, W., Kratz, K. and Lendlein, A., Acs Appl Mater Inter 9 (39), 33559-33564 (2017).CrossRefGoogle Scholar
Farhan, M., Rudolph, T., Nochel, U., Kratz, K. and Lendlein, A., Polymers-Basel 10 (3) (2018).Google Scholar
Mirabella, F. M. and Bafna, A., J Polym Sci Pol Phys 40 (15), 1637-1643 (2002).CrossRefGoogle Scholar