Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T05:13:32.575Z Has data issue: false hasContentIssue false

Three-Dimensional Continuum Dislocation Dynamics Simulations of Dislocation Structure Evolution in Bending of a Micro-Beam

Published online by Cambridge University Press:  29 January 2016

Alireza Ebrahimi*
Affiliation:
Universität Bremen, Am Biologischen Garten 2, 28359 Bremen, Germany
Thomas Hochrainer
Affiliation:
Universität Bremen, Am Biologischen Garten 2, 28359 Bremen, Germany
*
*Contact e-mail: [email protected]
Get access

Abstract

A persistent challenge in multi-scale modeling of materials is the prediction of plastic materials behavior based on the evolution of the dislocation state. An important step towards a dislocation based continuum description was recently achieved with the so called continuum dislocation dynamics (CDD). CDD captures the kinematics of moving curved dislocations in flux-type evolution equations for dislocation density variables, coupled to the stress field via average dislocation velocity-laws based on the Peach-Koehler force. The lowest order closure of CDD employs three internal variables per slip system, namely the total dislocation density, the classical dislocation density tensor and a so called curvature density.

In the current work we present a three-dimensional implementation of the lowest order CDD theory as a materials sub-routine for Abaqus® in conjunction with the crystal plasticity framework DAMASK. We simulate bending of a micro-beam and qualitatively compare the plastic shear and the dislocation distribution on a given slip system to results from the literature. The CDD simulations reproduce a zone of reduced plastic shear close to the surfaces and dislocation pile-ups towards the center of the beam, which have been similarly observed in discrete dislocation simulations.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kröner, E. and Rieder, G., Z. Phys. 145, 424429 (1956).CrossRefGoogle Scholar
Nye, J. F., Acta Metall. 1(2), 153162 (1953).CrossRefGoogle Scholar
Mura, T., Philos. Mag. 8(89), 843857 (1963).CrossRefGoogle Scholar
Acharya, A. and Roy, A., J. Mech. Phys. Solids 54(8), 16871710 (2006).CrossRefGoogle Scholar
Sedlacek, R., Kratochvil, J., Werner, E., Philos. Mag. 83 (31-34), 37353752 (2003).CrossRefGoogle Scholar
Hochrainer, T., Zaiser, M., Gumbsch, P., Philos. Mag. 87, 12611282 (2007).CrossRefGoogle Scholar
Hochrainer, T., Sandfeld, S., Zaiser, M., Gumbsch, P., J. Mech. Phys. Solids, 63, 167178 (2014)Google Scholar
Hochrainer, T., Philos. Mag, 95, 13211367 (2015)Google Scholar
Ebrahimi, A., Monavari, M., Hochrainer, T., MRS Proceedings, 1651, mrsf13-1651-kk06-05T (2014).CrossRefGoogle Scholar
Sandfeld, S. and Po, G., Model. Simul. Mater. Sci. Eng. 23, p. 085003 (2015)Google Scholar
Roters, F., Eisenlohr, P., Kords, C., Tjahjanto, D.D., Diehl, M., Raabe, D., Procedia IUTAM 3, 310 (2012).Google Scholar
Mura, T., Micromechanics of defects in solids (Kluwer Academic Publisher Group, Dordrecht, The Netherlands, 1982)Google Scholar
Motz, C., Weygand, D., Senger, J., Gumbsch, P., Acta Mater., 56, 19421955R (2008).CrossRefGoogle Scholar
Groma, I., Csikor, F. F., Zaiser, M., Acta Mater. 51, 12711281 (2003)Google Scholar
Hirth, J.P., Lothe, J., Theory of dislocations, (McGraw-Hill Book Comp, New York, 1968)Google Scholar
Sandfeld, S., Hochrainer, T., Zaiser, M., Gumbsch, P., Philos. Mag, 90, 132 (2010)CrossRefGoogle Scholar
Sandfeld, S., Hochrainer, T., Zaiser, M., Gumbsch, P., J. Mater. Res., vol. 26, 623632(2011)CrossRefGoogle Scholar