Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T04:07:36.992Z Has data issue: false hasContentIssue false

Synthesis of sub-millimeter tall SWNT forests on a catalyst underlayer of MgO single crystal

Published online by Cambridge University Press:  09 January 2017

Takashi Tsuji
Affiliation:
CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan Technology Research Association for Single Wall Carbon Nanotubes (TASC), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
Kenji Hata
Affiliation:
CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan Technology Research Association for Single Wall Carbon Nanotubes (TASC), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
Don N. Futaba
Affiliation:
CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan Technology Research Association for Single Wall Carbon Nanotubes (TASC), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
Shunsuke Sakurai*
Affiliation:
CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan Technology Research Association for Single Wall Carbon Nanotubes (TASC), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
*
Get access

Abstract

We have demonstrated the high yield and highly single wall selective synthesis of carbon nanotube forest grown using a MgO single crystal as a catalyst underlayer without any surface treatment. Such efficiency has not been previously reported using this underlayer system. Our investigation revealed that the growth ambient which contained no hydrogen but small amounts of water is essential for such efficiency. Evaluation of the growth kinetics by in-situ height monitoring revealed that the 350 μm tall forest with 65% single wall selectivity possessed a catalyst lifetime of about 5 minutes. Investigation by AFM, and XPS depth profiling revealed that this longer lifetime compared with as-deposited MgO can be attributed to the stability of the catalyst particle array with small size and high number density on MgO single crystal substrate. Shorter growth lifetime, when compared to the alumina underlayer system, resulted from an instability in the catalyst nanoparticle size and composition.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Murakami, Y., Chiashi, S., Miyauchi, Y., Hu, M., Ogura, M., Okubo, T., and Maruyama, S., Chem. Phys. Lett. 385, 298 (2004)Google Scholar
Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M., and Iijima, S., Science 306, 1362 (2004).Google Scholar
Futaba, D.N., Goto, J., Yamada, T., Yasuda, S., Yumura, M., and Hata, K., Carbon 48, 4542 (2010).Google Scholar
Amama, P.B., Pint, C.L., Kim, S.M., McJilton, L., Eyink, K.G., Stach, E.A., Hauge, R.H., and Maruyama, B., ACS Nano 4, 895 (2010).Google Scholar
Hu, Y., Kang, L., Zhao, Q., Zhong, H., Zhang, S., Yang, L., Wang, Z., Lin, J., Li, Q., Zhang, Z., Peng, L., Liu, Z., and Zhang, J., Nat. Commun. 6, 6099 (2015).CrossRefGoogle Scholar
Ismach, A., Segev, L., Wachtel, E., and Joselevich, E., Angew. Chem. Int. Ed. 43, 6140 (2004).Google Scholar
Ago, H., Nakamura, K., Ikeda, K., Uehara, N., Ishigami, N., and Tsuji, M., Chem. Phys. Lett. 408, 433 (2005).Google Scholar
Han, S., Liu, X., and Zhou, C., J. Am. Chem. Soc. 127, 5294 (2005).Google Scholar
Islam, A.E., Nikolaev, P., Amama, P.B., Saber, S., Zakharov, D., Huffman, D., Erford, M., Sargent, G., Semiatin, S.L., Stach, E.A., and Maruyama, B., Nano Lett. 14, 4997 (2014).CrossRefGoogle Scholar
Pint, C., Pheasant, S., Nicholas, N., Horton, C., and Hauge, R., J. Nanosci. Nanotechnol. 8, 6158 (2008).Google Scholar
Ohashi, T. and Shima, T., Carbon 87, 453 (2015).CrossRefGoogle Scholar
He, M., Vasala, S., Jiang, H., Karppinen, M., Kauppinen, E.I., Niemelä, M., and Lehtonen, J., Carbon 50, 4750 (2012).Google Scholar
Xiong, G.-Y., Wang, D.Z., and Ren, Z.F., Carbon 44, 969 (2006).Google Scholar
Lee, T.J., Seo, J., and Lee, H., J. Korean Phys. Soc. 53, 3236 (2008).Google Scholar
Tsuji, T., Hata, K., Futaba, D.N., and Sakurai, S., J. Am. Chem. Soc. in press.Google Scholar
Yasuda, S., Futaba, D.N., Yumura, M., Iijima, S., and Hata, K., Appl. Phys. Lett. 93, 143115 (2008).CrossRefGoogle Scholar
Chen, G., Davis, R.C., Futaba, D.N., Sakurai, S., Kobashi, K., Yumura, M., and Hata, K., Nanoscale 8, 162 (2016).Google Scholar