Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T07:35:17.186Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Chitosan-PVA hydrogels for pesticide release

Published online by Cambridge University Press:  29 January 2020

Rafael Nuñez-Reyes
Affiliation:
Tecnológico Nacional de México/IT de Toluca. Av. Tecnológico s/n. Colonia Agricola Bellavista Metepec, Edo. De México C.P. 52149.
José Luis García-Rivas*
Affiliation:
Tecnológico Nacional de México/IT de Toluca. Av. Tecnológico s/n. Colonia Agricola Bellavista Metepec, Edo. De México C.P. 52149.
Beatriz Garcia-Gaitan
Affiliation:
Tecnológico Nacional de México/IT de Toluca. Av. Tecnológico s/n. Colonia Agricola Bellavista Metepec, Edo. De México C.P. 52149.
Beatriz Magdalena Millan-Olvera
Affiliation:
Tecnológico Nacional de México/IT de Toluca. Av. Tecnológico s/n. Colonia Agricola Bellavista Metepec, Edo. De México C.P. 52149.
Marithza Guadalupe Ramírez-Gerardo
Affiliation:
Tecnológico de estudios superiors de Villa Guerrero; Carretera Federal Toluca-Ixtapan de la Sal Km 64.5, La Finca, Villa Guerrero.
Get access

Abstract

Chitosan (Ch)-Polyvinyl (alcohol) (PVA) hydrogels cross-linked with sodium tripolyphosphate were synthetized to obtain a polymer matrix encapsulating an insecticide (active ingredient: imidacloprid). Imidacloprid release tests were performed separately with moist and lyophilized hydrogel beads with a diameter of 3.47 and 3.30 mm respectively. The concentration of the insecticide released in the medium was determined by UV-Visible spectroscopy, reaching equilibrium for wet hydrogels at 72h at a concentration of 330 mg L-1 and 281 mg L-1 in 48h for lyophilized hydrogels, comparing it with a maximum load of 330.18 mg L-1of imidacloprid contained in the hydrogels. The characterization of hydrogels was performed by Fourier transform infrarred spectroscopy (FTIR) to determine the functional groups. The morphology of the polymer matrix of the hydrogels was carried out in a scanning electron microscope (SEM). The size distribution and diameter of bead samples were observed through a stereomicroscope. The percentage of humidity of the hydrogels was determined obtaining 94.8% once the imidacloprid was released. the pore size of the samples was determined by the Brunauer-Emmet-Teller (BET) technique. The techniques used indicated that controlled release of imidacloprid could be more efficient with wet hydrogels in relation to the maximum load of imidacloprid contained, for protection of crops is necessary for a long time because of insecticide disponible in the soil.

Type
Articles
Copyright
Copyright © Materials Research Society 2020 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

Ortiz, Irmene, Avila, M. A. and Torres, L. G., Revista Latinoamericana de Biotecnologia Ambiental y Algal , pp. 26-46, 2013.Google Scholar
Benitez, J. L., Contreras, D., Guzman, P., Ramirez, A., Prin, J. L. and Rojas de Gáscue, B., Revista Iberoamericana de Polímeros , vol. 12, no. 6, pp. 292-299, 2011.Google Scholar
Mármol, Z. , Páez, G., Rincón, M., Araujo, K., Aiello, C., Chandler, C. and Gutiérrez, E., Revista Tecnocientífica URU , vol. 1, pp. 53-58, 2011.Google Scholar
Kocemba, A. and , M. M. , Porgress on chemistry and application on chitin and its derivatives , vol. 22, pp. 90-94, 2017.Google Scholar
Badawy, M. E. and El-Aswad, A. F., Plant Protect Sci ., vol. 48, no. 3, pp. 131-141, 2012.CrossRefGoogle Scholar
Mulder van de Graaf, G. M., Do Valle De Zoppa, A. L., Moreira, R. C., Maestrelli, S. C., Costa Marques, R. F. and Nogueira Campos, M. G., Research on Biomedical Engineering , vol. 31, no. 4, pp. 334-342, 2015.CrossRefGoogle Scholar
Echeverri, C., Vallejo, C. and Londoño, M. E., Revista, EIA, pp. 59-66, Diciembre 2009.Google Scholar
Agnihotri, S., Mukherji, S. and Mukherji, S., Appl Nanosci , pp. 179-188, 2012.CrossRefGoogle Scholar
Sanchés, A., Sibaja, M., Vega, J. and Madrigal, S., Revista iberoamericana de Polímeros , pp. 241-267, 2007.Google Scholar
Mulchandani, N., Shah, N. and Mehta, T., Polymers & Polymers Composites , vol. 25, no. 3, 2017.Google Scholar
Quintás, G., Armenta, S., Garrigues, S. and de la Guardia, M., Sociedad Brasileira de Química , vol. 15, no. 2, pp. 307-312, 2004.Google Scholar
Loutfy, S., Alam, H., Elberry, M., Allam, N., Hasanin, M. and Abdellah, A., Advances in Natural Sciences: Nanoscience and Nanotechnology , vol. 7, pp. 1-9, 2016.Google Scholar
DT, T., NT, A. and NT, H., Chemical Sciences Journal , vol. 6, no. 2, pp. 1-8, 2015.CrossRefGoogle Scholar
Gao, Z., Pang, L., Feng, H., Wang, S., Wang, Q., Wang, M., Xia, Y. and Hu, S., RSC Advances , vol. 7, pp. 15762-15768, 2017.CrossRefGoogle Scholar
Shariatinia, Z. and Jalali, A., Biological Macromolecules , pp. 1-85, 2018.Google Scholar
Santoveña, A., Monzon, C., Delgado, A., Evora, C., Llabrés, M. and Fariña, J. B., Journal of Drug Delivery Science and Technology , vol. 42, pp. 284-291, 2017.CrossRefGoogle Scholar
Sánchez-duarte, R. G., Sánchez-manchado, D. I., Lopez-Cervantes, J. and Correa-Murrieta, M. A., Water Science & Technology , vol. 4, no. 65, pp. 618-623, 2012.CrossRefGoogle Scholar
Ostrowska-Czubenko, J. and Gierszewska-Druzynska, M., Carbohydrate polymers , no. 77, pp. 590-598, 2009.CrossRefGoogle Scholar
Mansur, H. S., Sadahira, C. M., Souza, A. N. and Mansur, A. A. P., Materials Science and Engineering, no. 28, pp. 539-548, 2008.CrossRefGoogle Scholar
, Z. H., , D. Y., , Y. J., , H. R. and , Z. L., “Preparation and characterization of chitosan/poly(vinyl-alcohol) blend fibers,” J. Appl Polym Sci. , vol. 80, no. 13, pp. 2558-2565, 2001.CrossRefGoogle Scholar
, N. S. and , A. AL., “Permeability of vitamin B-12 in chitosan membranes. Effect of crosslinking and blending with poly(vinyl alcohol) on permeability,” J. Apply Polym Sci. , vol. 44, no. 1, pp. 17-28, 1992.CrossRefGoogle Scholar