Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T09:56:05.523Z Has data issue: false hasContentIssue false

Synthesis and characterization of bimetallic noble metal nanoparticles for biomedical applications

Published online by Cambridge University Press:  20 January 2016

Prem C. Pandey*
Affiliation:
Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
Govind Pandey
Affiliation:
Department of Pharmacology, BRD Medical College, Gorakhpur-273013, India
*
Get access

Abstract

We report herein a facile approach to synthesize processable bimetallic nanoparticles (Pd-Au/AuPd/Ag-Au/Au-Ag) decorated Prussian blue nanocomposite (PB-AgNP). The presence of cyclohexanone/formaldehyde facilitates the formation of functional bimetallic nanoparticles from 3-aminopropyltrimethoxysilane (3-APTMS) capped desired ratio of hetero noble metal ions. The use of 3-APTMS and cyclohexanone also enables the synthesis of polycrystalline Prussian blue nanoparticles (PBNPs). As synthesized PBNPs, Pd-Au/Au-Pd/Ag-Au/Au-Ag enable the formation of nano-structured composites displaying better catalytic activity than that recorded with natural enzyme. The nanomaterials have been characterized by Uv-Vis, FT-IR and Transmission Electron Microscopy (TEM) with following major findings: (1) 3-APTMS capped noble metal ions in the presence of suitable organic reducing agents i.e.; 3 glycidoxypropyltrimethoxysilane (GPTMS), cyclohexanone and formaldehyde; are converted into respective nanoparticles under ambient conditions, (2) the time course of synthesis and dispersibility of the nanoparticles are found as a function of organic reducing agents, (3) the use of formaldehyde and cyclohexanone in place of GPTMS with 3-APTMS outclasses the other two in imparting better stability of amphiphilic nanoparticles with reduced silanol content, (4) simultaneous synthesis of bimetallic nanoparticles under desired ratio of palladium/gold and silver/ gold cations are recorded, (5) the nanoparticles made from the use of 3-APTMS and cyclohexanone enable the formation of homogeneous nanocomposite with PBNP as peroxidase mimetic representing potential substitute of peroxidase enzyme. The peroxidase mimetic ability has been found to vary as a function of 3-APTMS concentration revealing the potential role of functional metal nanoparticles in bioanalytical applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kelly, L. K., Coronado, E., Zhao, L. L. and Schatz, G. C., J. Phys. Chem. B., 2003, 107, 668677.CrossRefGoogle Scholar
Evanoff, D. D. and Chumanov, G., ChemPhysChem. 2005, 6, 12211231.CrossRefGoogle Scholar
Wu, J., Tan, L. H., Hwang, K., Xing, H., Wu, P., Li, W. and Lu, Y., J. Am. Chem. Soc. 2014, 136, 1519515202.CrossRefGoogle Scholar
linand, Q.Sun, Z., J. Phys. Chem. C. 2011, 115, 14741479.Google Scholar
Panacek, A., Prucek, R., Hrbac, J., Neve-cena, T., Steffcova, J., Zboril, R. and Kvitek, L., Chem. Mater. 2014, 26, 13321339.Google Scholar
Baruah, B., Gabriel, G. J., Akbashev, M. J. and Booher, M. E., Langmuir, 2013, 29, 42254234.CrossRefGoogle Scholar
Panacek, A., Kvitek, L., Prucek, R., Kolar, M., Vecerova, R., Pizurova, N., Sharma, V. K., Nevecna, T. and Zboril, R., J. Phys. Chem. B. 2006, 110, 1624816253.Google Scholar
Rizzello, L. and Pompa, P. P., Chem. Soc. Rev. 2014, 43, 15011518.CrossRefGoogle Scholar
Niu, A., Han, Y., Wu, J., Yu, N. and Xu, Q., J. Phys. Chem. C., 2010, 114, 1272812735.CrossRefGoogle Scholar
Sun, Y. and Xia, Y., Science, 2002, 298, 21762179.CrossRefGoogle Scholar
Li, Y., Wu, Y. and Ong, B. S., J. Am. Chem. Soc, 2005, 127, 32663267.CrossRefGoogle Scholar
Chernousova, S. and Epple, M., Angew. Chem., Int. Ed. 2013, 52, 16361653.CrossRefGoogle Scholar
Lu, L., Wang, H., Zhou, Y., Xi, S., Zhang, H., Hu, J. and Zhao, B.,Chem. Commun., 2002, 144145.CrossRefGoogle Scholar
Li, Z. Y., Yuan, J., Chen, Y., Palmer, R. E. and Wilcoxon, J. P., Adv. Mater. 2005, 17, 28852888.CrossRefGoogle Scholar
Ferrando, R., Jellinek, J. and Johnston, R. L.,Chem. Rev. 2008, 108, 845910.Google Scholar
Lazarus, L. L., Riche, C. T., Marin, B. C., Gupta, M., Malmstadt, N. and Brutchery, R. L., ACS Appl. Mater. Interfaces., 2012, 4, 30773083.Google Scholar
Bu, Y. and Lee, S., ACS Appl. Mater. Interfaces. 2012, 4, 39233931.CrossRefGoogle Scholar
Li, C. H., Jamison, A. C., Rittikulsittichai, S., Lee, T. C. and Lee, T. R., ACS Appl. Mater. Interfaces, 2014, 6, 1994319950.CrossRefGoogle Scholar
Sharma, M., Pudasaini, P. R., Zepeda, F. R., Vinogradova, E. and Ayon, A. A., ACS Appl. Mater. Interfaces, 2014, 6, 1547215479.Google Scholar
Sun, J., Yang, F., Zhao, D., Chen, C. and Yang, X., ACS Appl. Mater. Interfaces. 2015, 7, 68606866.Google Scholar
Shi, J., Chem. Rev. 2013, 113, 21392181.CrossRefGoogle Scholar
Bhargava, S. K., Booth, J. M., Agrawal, S., Coloe, P. and Kar, G., Langmuir, 2005, 21, 59495956.CrossRefGoogle Scholar
Newman, J. D. S. and Blanchard, G. J., Langmuir 2006, 22, 58825887.CrossRefGoogle Scholar
Pandey, P. C. and Singh, Richa, RSC Adv., 2015, 5, 49671–45679.Google Scholar
Sainsbury, T., Ikuno, T., Okawa, D., Pacile, D., Frechet, J. M. J. and Zettl, A., J. Phys. Chem. C., 2007, 111, 1299212999.Google Scholar
Pandey, P. C. and Chauhan, D. S., Analyst, 2012, 137, 376385.Google Scholar
Pandey, P. C., Pandey, A. K. and Pandey, G., J. Nanosci. Nanotechnol. 2014, 14, 66066613.Google Scholar
Pandey, P. C. and Pandey, G.,J. Mater. Chem. B. 2014, 2, 33833390.Google Scholar
Pandey, P. C., Singh, R. and Pandey, A. K., Electrochim. Acta. 2014, 138, 163173.CrossRefGoogle Scholar
Pandey, P. C. and Singh, R., RSC Adv. 2015, 5, 1096410973.Google Scholar
Pandey, P. C., Panday, D. and Pandey, G., RSC Adv. 2014, 4, 6056360572.CrossRefGoogle Scholar
Pandey, P. C. and Pandey, A. K., Electrochim. Acta. 2013, 87, 18.CrossRefGoogle Scholar
Pandey, P. C. and Pandey, A. K., Analyst, 2013, 138, 22952301.Google Scholar
Wei, H. and Wang, E., Anal. Chem. 2008, 80, 22502254.CrossRefGoogle Scholar
Jv, Y., Li, B. and Cao, R., Chem. Commun. 2010, 46, 80178019.CrossRefGoogle Scholar
Jiang, H., Chen, Z., Cao, H. and Huang, Y., Analyst, 2012, 137, 55605564.CrossRefGoogle Scholar
Zhang, L., Han, L., Hu, P., Wang, L. and Dong, S., Chem. Commun., 2013, 49, 1048010482.Google Scholar
He, W., Wu, X., Liu, J., Hu, X., Zhang, K., Hou, S., Zhou, W. and Xie, S., Chem.Mater., 2010, 22, 29882994.Google Scholar
Sitnikova, N. A., Komkova, M. A., Khomyakova, I. V., Karyakina, E. E. and Karyakin, A., Anal. Chem., 2014, 86, 41314134.Google Scholar
Tacconi, N. R. and Rajeshwar, K., Chem. Mater.2003, 15, 30463062.CrossRefGoogle Scholar
Karyakin, A. A., Puganova, E. A., Budashov, I. A., Kurochkin, I. N., Karyakina, E. E., E. E.; Levchenko, V. A., Matveyenko, V. N. and Varfolomeyev, S. D., Anal.Chem. 2004, 76, 474478.Google Scholar
Pandey, P. C. and Singh, R., J. Nanosci. Nanotechnol, 2015, 15, 57495759.CrossRefGoogle Scholar
Cushing, B. L., Kolesnichenko, V. L. and Connor, C. J., Chem. Rev, 2004, 104, 38933946.Google Scholar
Daniel, M. C. and Astruc, D., Chem. Rev, 2004, 104, 293346.Google Scholar
Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y. and Kumar, R., Prog. Polym. Sci. 2013, 38, 12321261.CrossRefGoogle Scholar
Chaudhari, R. G. and Paria, S., Chem. Rev. 2012, 112, 23732433.CrossRefGoogle Scholar
Wight, A. P. and Davis, M. E., Chem. Rev. 2002, 102, 35893614.Google Scholar
Tewari, Y. B., Schantz, M. M., Pandey, P. C., Rekharsky, M. V. and Goldberg, R. N., J. Phys.Chem. 1995, 99, 15941601.Google Scholar
Weetall, H. H., Appl.Biochem. Biotechnol., 1993, 41, 157188.CrossRefGoogle Scholar
Wong, Y. N., Boonton, N. J., U. S. Patent, 5, 601, 979, 1997.Google Scholar
Pandey, P. C., Upadhyay, S. and Pathak, H. C., Electroanalysis, 1999, 11, 5965.Google Scholar
Pandey, P. C., Upadhyay, S., Pathak, H. C., Tiwari, I. and Tripathi, V. S., Electroanalysis, 1999, 11, 12511258.3.0.CO;2-M>CrossRefGoogle Scholar
Pandey, P. C., Upadhyay, S. and Pathak, H. C., Sens. Actuators. B., 1999, 60, 8389.CrossRefGoogle Scholar
Pandey, P. C., Upadhyay, S., Shukla, N. K. and Sharma, S., Biosens. Bioelectron., 2003, 18, 12571268.Google Scholar
Pandey, P. C. and Singh, B., Biosens. Bioelectron., 2008, 24, 842848.Google Scholar
Pandey, P. C. and Upadhyay, S., Sens. Actuators. B., 2001, 78, 148155.Google Scholar
Pandey, P. C., Upadhyay, S. and Sharma, S., J. Electrochem. Soc., 2003, 150, H85H92.CrossRefGoogle Scholar
Pandey, P. C. and Prakash, A., J. Electroanal. Chem., 2014, 729, 95102.CrossRefGoogle Scholar
Gonzalez, C. M., Liu, Y. and Scaiano, J. C., J. Phys. Chem. C., 2009, 113, 1186111867.CrossRefGoogle Scholar
Bayliss, P., Erd, D. C., Mrose, M. E., Sabina, A. P. and Smith, D. K., Mineral Powder Diffraction FileData Book JCPDS, 1986.Google Scholar
Chen, H., Li, Y., Zhang, F., Zhang, G., Fan, X. and J. Mater. Chem., 2011, 21, 1765817661.Google Scholar
Arun, T., Prakash, R. and Joseyphus, J., J. Magn. Magn. Mater. 2013, 345, 100105.CrossRefGoogle Scholar
Gao, L., Zhuang, J., Nie, L., Zhang, J., Zhang, Y., Gu, N., Wang, T., Feng, J., Yang, D., Perrett, S. and Yan, X., Nat. Nanotechnol. 2007, 2, 577583.Google Scholar