Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T12:10:48.283Z Has data issue: false hasContentIssue false

A Study of Uranyl (VI) Chloride Complexes in Aqueous Solutions under Hydrothermal Conditions using Raman Spectroscopy

Published online by Cambridge University Press:  13 April 2020

Diwash Dhakal
Affiliation:
Department of Physics, Astronomy and Materials Science, Missouri State University, Springfield, Missouri, U.S.A.
Nadib Akram
Affiliation:
Department of Physics, Astronomy and Materials Science, Missouri State University, Springfield, Missouri, U.S.A.
Robert A. Mayanovic*
Affiliation:
Department of Physics, Astronomy and Materials Science, Missouri State University, Springfield, Missouri, U.S.A.
Hakim Boukhalfa
Affiliation:
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, U.S.A.
Hongwu Xu
Affiliation:
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, U.S.A.
*
Get access

Abstract

The transport and deposition of uranium under hydrothermal conditions in the Earth’s crust has been a subject of ongoing study but is yet to be completely understood. In addition, there is little known about the fate of nuclear waste, consisting of uranium from spent fuel and other radioactive materials, upon storage in repositories or in nuclear reactor facilities. Because the nuclear waste often comes in contact with aqueous fluids in storage environments, studies of uranyl complexation with chloride and other ligands in aqueous media, to high temperature and pressure conditions, are needed. The primary purpose of this study was to investigate the speciation of aqueous uranyl (VI) chloride complexes, in solutions having a 0.05 M uranyl concentration and [Cl] concentrations ranging from 0.2 M to 6 M, under hydrothermal conditions. The aqueous uranyl chloride complexes in the samples were studied using Raman spectroscopy and the hydrothermal diamond anvil cell (HDAC), at temperatures up to 500 °C and pressures up to ~ 0.5 GPa. The uranyl bond stretching band feature occurring in the ~810 to 870 cm-1 region was fitted using the Voigt peak shape to determine the speciation of the equilibrium uranyl chloride complexes present in the samples. As expected, the n integer value of the UO2Cln+2-n complex species increases with the increase in temperature and chloride concentration, generally trending toward charge neutrality at high temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Richard, A., Rozsypal, C., Mercadier, J., Banks, D., Cuney, M., Boiron, M. and Cathelineau, M., Nat. Geosci. 5, 142 (2011).10.1038/ngeo1338CrossRefGoogle Scholar
Batlle, J.V.I., Ann. ICRP 44, 331 (2015).10.1177/0146645315576099CrossRefGoogle Scholar
Burns, P.C., Ewing, R.C., and Navrotsky, A., Science, 335, 1184 (2012).10.1126/science.1211285CrossRefGoogle Scholar
Choppin, G. R. and Du, M., Rad. Acta, 58, 101 (1992).Google Scholar
Runde, W., Neu, M., Conradson, S., Clark, D., Palmer, P., Reilly, S., Scott, B. and Tait, C., MRS Proc. 465, 693 (1996).10.1557/PROC-465-693CrossRefGoogle Scholar
Nguyen Trung, C., Begun, G. and Palmer, D., Inorg. Chem. 31, 5280 (1992).10.1021/ic00051a021CrossRefGoogle Scholar
Soderholm, L., Skanthakumar, S. and Wilson, R., J. Phys. Chem. A 115, 4959 (2011).10.1021/jp111551tCrossRefGoogle Scholar
Dargent, M., Dubessy, J., Truche, L., Bazarkina, E., Nguyen-Trung, C. and Robert, P., Eur J Mineral, 25, 765 (2014).10.1127/0935-1221/2013/0025-2319CrossRefGoogle Scholar
Migdisov, A., Boukhalfa, H., Timofeev, A., Runde, W., Roback, R. and Williams-Jones, A., Geochim Cosmochim Ac, 222, 130 (2018).10.1016/j.gca.2017.10.016CrossRefGoogle Scholar
Seward, T. M., Williams-Jones, A. E., Migdisov, A., In Treatise on Geochemistry , edited by Heinrich, D. Holland and Turekian, K. K., 2nd ed. (Elsevier, Oxford, 2014) p 29.10.1016/B978-0-08-095975-7.01102-5CrossRefGoogle Scholar
Crerar, D., Wood, S., Brantley, S., Bocarsly, A., Can. Mineral., 23, 333 (1985).Google Scholar
Fujii, T., Fujiwara, K., Yamana, H. and Moriyama, H., J. Alloys Compd 323, 859 (2001).10.1016/S0925-8388(01)01161-6CrossRefGoogle Scholar
Haszeldine, R. and Kidd, J., J. Chem. Soc., 4228 (1954).10.1039/jr9540004228CrossRefGoogle Scholar
Bassett, W., Shen, A., Bucknum, M. and Chou, I., Rev. Sci. Instrum, 64, 2340 (1993).10.1063/1.1143931CrossRefGoogle Scholar
Anderson, A., Yan, H., Mayanovic, R., Solferino, G. and Benmore, C., High Press Res, 34, 100 (2014).10.1080/08957959.2013.870565CrossRefGoogle Scholar
Yan, H., Mayanovic, R., Anderson, A. and Meredith, P., Nucl. Instrum. Methods Phys. Res, 649, 207 (2011).10.1016/j.nima.2010.11.067CrossRefGoogle Scholar
Mayanovic, R.A., Anderson, A.J., Bassett, W.A., and Chou, I.-M., J. Synchr. Rad. 6, 195 (1999).10.1107/S0909049599001727CrossRefGoogle Scholar
Bassett, W.A., Anderson, A.J., Mayanovic, R.A., and Chou, I.-M., Chem. Geol. 167, 3 (2000).10.1016/S0009-2541(99)00196-5CrossRefGoogle Scholar
Izquierdo-Ruiz, F., Menéndez, J.M., and Recio, J.M., Theor. Chem. Acc. 134, 7 (2015).10.1007/s00214-014-1605-3CrossRefGoogle Scholar