Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T03:02:33.807Z Has data issue: false hasContentIssue false

Structural Characterization of Ternary Salt Melts for Low Activity Waste Applications

Published online by Cambridge University Press:  21 February 2019

Emily Nienhuis*
Affiliation:
Washington State University, Materials Science and Engineering Program
Muad Saleh
Affiliation:
Washington State University, Materials Science and Engineering Program
John McCloy
Affiliation:
Washington State University, Materials Science and Engineering Program Washington State University, School of Mechanical and Materials Engineering
*
Get access

Abstract

Reactions of alkali salts (nitrates, sulfates, carbonates, halides, borates) play a key role in the low temperature feed conversion occurring at the cold cap during processing of Hanford Low Activity Waste (LAW) glass melters. An alkali salt phase can sometimes form, and preferentially incorporate radionuclides of Cs, Cl, I, and Tc. During melting of the slurry feed, some of the feed components sequentially break down with increasing temperature to form gases (i.e., nitrates ➔ NOx, carbonates ➔ CO2, and boric acid ➔ H2O) or partially volatilize (halides). Sulfate, however, tends not to volatilize but has limited solubility in the final borosilicate glass waste form. To improve understanding of these low temperature processes and their composition dependencies, a scoping study was undertaken to synthesize salt systems that remain amorphous at room temperature, thus facilitating structural study. Melts of equimolar ratios of K2SO4-ZnSO4 (a known ionic glass-forming system) with added nitrates, halides, or carbonates, were melted and quenched. Some of the materials formed single phase glasses and some underwent crystallization upon quenching. Characterization of these quenched materials by thermal analysis, infrared absorption, and diffraction was performed. Addition of other anions to the sulfate base glass resulted in a distortion of the sulfate tetrahedron, as evidenced by infrared absorption. Carbonates strongly promoted crystallization, mostly of carbonate phases. Nitrates promoted crystallization of ZnO, and the nitrate volatilized with some incorporating into the glass. Halides tended to incorporate into the glass, but the small (F) and large (I) halogens promoted crystallization of sulfate-containing crystals, while moderate sized (Cl) halogens produced single-phase ionic glasses.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

Certa, P.J., Kirkbride, R.A., Hohl, T.M., Empey, P.A. and Wells, M.N., River Protection Project System Plan, United States, ORP--11242/Rev8 (2018).Google Scholar
Xu, K., Hrma, P., Rice, J., Riley, B.J., Schweiger, M.J. and Crum, J.V., J. Non-Cryst. Solids 98, 3105 (2015).Google Scholar
Jantzen, C., Mineralization of radioactive wastes by fluidized bed steam reforming (FBSR): Comparisons to vitreous waste forms, and pertinent durability testing, Savannah River Site, Aiken, SC, WSRC-STI-2008-00268 (2008).Google Scholar
Rahman, R.O.A., Rakhimov, R.Z., Rakhimova, N.R. and Ojovan, M.I., Cementitious Materials for Nuclear Waste Immovilization , (Wiley, 2014).Google Scholar
Xu, K., Hrma, P., Rice Jarrett, A., Schweiger Michael, J., Riley Brian, J., Overman Nicole, R., Kruger Albert, A. and Vance, E., J. Amer. Ceram. Soc. 99, 2964 (2016).CrossRefGoogle Scholar
Goel, A., McCloy, J.S., Windisch, C.F., Riley, B.J., Schweiger, M.J., Rodriguez, Carmen P. and Ferreira, J.M.F., Int. J. Appl. Glass Sci. 4, 42 (2013).CrossRefGoogle Scholar
Riley Brian, J., McCloy John, S., Goel, A., Liezers, M., Schweiger Michael, J., Liu, J., Rodriguez Carmen, P., Kim, D.S. and Jantzen, C., J. Amer. Ceram. Soc. 96, 1150 (2013).CrossRefGoogle Scholar
Rapko, B.M.B., Samuel, A.; Chatterjee, Sayandev; Edwards, Matthew K.; Levitskaia, Tatiana G.; Peterson, James M., Investigations Into the Nature of Alkaline Soluble, Non-Pertechnetate Technetium, PNNL, Richland, WA, PNNL-22957 (2013).Google Scholar
Jin, T., Kim, D., Tucker, A.E., Schweiger, M.J. and Kruger, A.A., J. Non-Cryst. Solids 425, 28 (2015).CrossRefGoogle Scholar
Hrma, P., Vienna, J. and Ricklefs, J. in Mat. Res. Soc. Symp. - Sci. Basis Nucl. Waste Manage. XXVI , edited by Finch, R. J. and Bullen, D. B., (Materials Research Society, Warrendale, PA 757, Boston, MA, 2002), pp. 147.Google Scholar
Jantzen, C.M., Smith, M.E. and Peeler, D.K. in Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries X , edited by Vienna, J. D., Herman, C. C. and Marra, S., (The American Ceramic Society 168, Indianapolis, IN, 2004), pp. 141.Google Scholar
Goles, R., Perez, J., MacIsaac, B., Siemer, D. and McCray, J., Test summary report INEEL sodium-bearing waste vitrification demonstration - RSM-01-1, Pacific Northwest National Laboratory, Richland, WA, PNNL-13522 (2001).Google Scholar
Li, H., Hrma, P. and Vienna, J.D. in Env. Issues Waste Manage. Tech. Ceram. Nucl. Ind. VI , edited by Spearing, D. R., Smith, G. L. and Putnam, R. L., (The American Ceramic Society, Westerville, OH 119, St. Louis, MO, 2000), pp. 237.Google Scholar
Hrma, P., Vienna, J., Buchmiller, W. and Ricklefs, J. in Env. Issues Waste Manage. Tech. Ceram. Nucl. Ind. IX- Ceram. Trans., edited by Vienna, J. D. and Spearing, D. R., (The American Ceramic Society, Westerville, OH 155, Nashville, TN, 2003), pp. 93.Google Scholar
Pegg, I.L., Gan, H., Muller, I., McKeown, D. and Matlack, K.S., Summary of preliminary results on enhanced sulfate incorporation during vitrification of LAW feeds, Vitreous State Laboratory, the Catholic University of America, Washington, D.C., VSL-00R3630-1 (2000).Google Scholar
Lee, S. and Min, D.J., J. Amer. Ceram. Soc. 100, 2543 (2017).CrossRefGoogle Scholar
Vienna, J.D., Skorski, D.C., Kim, D.S. and Matyáš, J., Glass Property Models and Constraints for Estimating the Glass to be Produced at Hanford by Implementing Current Advanced Glass Formulation Efforts, Pacific Northwest National Laboratory, Richland, WA, PNNL-22631, USDOE EWG-RPT-003 (2013).Google Scholar
Vienna, J.D., Kim, D.-S., Muller, I.S., Piepel, G.F. and Kruger, A.A., 97, 3135 (2014).Google Scholar
McKeown, D.A., Muller, I.S., Gan, H., Feng, Z., Viragh, C. and Pegg, I.L., 357, 2735 (2011).Google Scholar
Goel, A., McCloy, J.S., Windisch, C.F., Riley, B.J., Schweiger, M.J., Rodriguez, C.P. and Ferreira, J.M.F., Intl. J. Appl. Glass Sci. 4, 42 (2013).CrossRefGoogle Scholar
Calas, G., Le Grand, M., Galoisy, L. and Ghaleb, D., J. Nucl. Mater. 322, 15 (2003).CrossRefGoogle Scholar
Hrma, P., Vienna, J.D., Wilson, B.K., Plaisted, T.J. and Heald, S.M., 352, 2114 (2006).Google Scholar
Sundar, H.G.K., Rao, B.G. and Rao, K.J., Phys. Chem. Glasses 23, (1982).Google Scholar
Narasimham, P.S.L. and Rao, K.J., J. Non-Cryst. Solids 27, 225 (1978).CrossRefGoogle Scholar
Sundar, H.G.K. and Rao, K.J., J. Chem. Soc., Faraday Trans. 176, 1617 (1980).CrossRefGoogle Scholar
Luzhnaya, N., Evseeva, N. and Vereshcetina, N., Zh. Neorg. Khim. 1, 1490 (1956).Google Scholar
Wang, Y.B., Ryan, D.H. and Altounian, Z., J. Non-Cryst. Solids 205-207, 221 (1996).CrossRefGoogle Scholar
Kamiyama, T., Shibata, K., Suzuki, K. and Nakamura, Y., Physica B Condens Matter 213-214, 483 (1995).CrossRefGoogle Scholar
Poulain, M., J. Non-Cryst. Solids 56, 1 (1983).CrossRefGoogle Scholar
Van Uitert, L.G. and Wemple, S.H., Appl. Phys. Lett. 33, 57 (1978).CrossRefGoogle Scholar
Zeidler, A., Chirawatkul, P., Salmon, P.S., Usuki, T., Kohara, S., Fischer, H.E. and Howells, W.S., J. Non-Cryst. Solids 407, 235 (2015).CrossRefGoogle Scholar
Thieme, A., Möncke, D., Limbach, R., Fuhrmann, S., Kamitsos, E.I. and Wondraczek, L., J. Non- Cryst. Solids 410, 142 (2015).CrossRefGoogle Scholar
Lai, Y.M., Liang, X.F., Yang, S.Y., Wang, J.X. and Zhang, B.T., J. Mol. Struct. 1013, 134 (2012).CrossRefGoogle Scholar
Albertsson, J., Abrahams, S.C. and Kvick, A., Acta Cryst. B 45, 34 (1989).CrossRefGoogle Scholar
Ojima, K., Nishihata, Y. and Sawada, A., Acta Cryst. B 51, 287 (1995).CrossRefGoogle Scholar
Pinheiro, C.B., Pimenta, M.A., Chapuis, G. and Speziali, N.L., Acta Cryst. B 56, 607 (2000).CrossRefGoogle Scholar
Kohara, S., Suzuya, K. and Ohno, H., Plasmas & Ions 2, 79 (1999).CrossRefGoogle Scholar
Wildner, M. and Giester, G., Contributions Mineral. Petrol. 39, 201 (1988).CrossRefGoogle Scholar
Berg, R.W. and Thorup, N., Inorg Chem 44, 3485 (2005).CrossRefGoogle Scholar
Nakagawa, I. and Walter, J.L., J. Chem. Phys. 51, 1389 (1969).CrossRefGoogle Scholar
Frech, R., Wang, E.C. and Bates, J.B., Spectrochim. Acta A 36, 915 (1980).CrossRefGoogle Scholar
Datta, R.K., Roy, D.M., Faile, S.P. and Tuttle, O.F., J. Amer. Ceram. Soc. 47, 153 (1964).CrossRefGoogle Scholar
Zarzycki, J., Discuss. Faraday Soc. 32, 38 (1961).CrossRefGoogle Scholar
Marcus, Y., Chem. Rev. 88, 1475 (1988).CrossRefGoogle Scholar