Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T02:26:49.187Z Has data issue: false hasContentIssue false

Structural Characteristics and Diffusion Coefficient of Alginate Hydrogels Used for Cell Based Drug Delivery

Published online by Cambridge University Press:  22 May 2018

Avid Najdahmadi*
Affiliation:
Department of Chemical Engineering and Materials Science, University of California at Irvine, Irvine, USA.
Jonathan RT Lakey
Affiliation:
Department of Surgery, University of California at Irvine, Irvine, USA
Elliot Botvinick
Affiliation:
Department of Chemical Engineering and Materials Science, University of California at Irvine, Irvine, USA. Department of Biomedical Engineering, University of California at Irvine, Irvine, USA. Department of Surgery, University of California at Irvine, Irvine, USA
*
Get access

Abstract

Alginate is a hydrogel polymer commonly used in multiple drug delivery and cellular tissue transplantation applications. Tunability, gel formation, and stabilization properties of this biopolymer contributes to a better controlled and prolonged release of encapsulated drugs as well as the ability to provide immunoisolation to transplanted cells. One commonly used application of this biopolymer is pancreatic islet transplantation, as a promising approach of providing insulin to type 1 diabetics. The encapsulant alginate provides passage to nutrients, glucose and oxygen and allows the insulin to diffuse while blocking immunoglobulins. In this study, a hydrogel encapsulator is designed and used to fabricate spherical alginate microcapsules. These capsules are then incubated in either a calcium chloride solution typical used to polymerize alginate or a physiological media formulated to mimic in vivo conditions. The diffusion of different molecular weight particles tagged with spectrally distinct fluorescent molecules into the microspheres is observed using confocal laser microscopy. We characterize changes in diffusional characteristics of these molecules within alginate spheres as a function of incubation duration. We estimate diffusion coefficients (D) from fluorescence image series and observe a notable increase in capsule permeability once incubated in physiological media. Our strategy can serve as quantitative method to analyze structural changes in hydrogels.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Airey, G.D., Construction and Building Materials 16, 473 (2002).CrossRefGoogle Scholar
Ferrer-Argemi, L., Aliabadi, E.S., Cisquella-Serra, A., Salazar, A., Madou, M., and Lee, J., Carbon N. Y. 130, 87 (2018).CrossRefGoogle Scholar
Hao, L., Lawrence, J., and Li, L., Appl. Surf. Sci. 247, 453 (2005).CrossRefGoogle Scholar
Asghari, A., Zarei-Hanzaki, A., and Eskandari, M., Materials Science and Engineering: A 579, 150 (2013).CrossRefGoogle Scholar
Najdahmadi, A., Zarei-Hanzaki, A., and Farghadani, E., International Conference of Metallurgical Engineering Society and Foundry Men’s Society 1622-IMES-CONGR-FULL (2012).Google Scholar
Eskandari, M., Zarei-Hanzaki, A., Yadegari, M., Soltani, N., and Asghari, A., Opt. Lasers Eng. 54, 79 (2014).CrossRefGoogle Scholar
Augst, A.D., Kong, H.J., and Mooney, D.J., Macromol. Biosci. 6, 623 (2006).CrossRefGoogle Scholar
Mohammadi, M.R., Rezaa Mohammadi, M., Nojoomi, A., Mozafari, M., Dubnika, A., Inayathullah, M., and Rajadas, J., J. Mater. Chem. B Mater. Biol. Med. 5, 3995 (2017).CrossRefGoogle Scholar
Pandey, N., Hakamivala, A., Xu, C., Hariharan, P., Radionov, B., Huang, Z., Liao, J., Tang, L., Zimmern, P., Nguyen, K.T., and Hong, Y., Adv. Healthc. Mater. 7, e1701069 (2018).CrossRefGoogle Scholar
Nojoomi, A., Tamjid, E., Simchi, A., Bonakdar, S., and Stroeve, P., International Journal of Polymeric Materials and Polymeric Biomaterials 66, 105 (2016).CrossRefGoogle Scholar
Najdahmadi, A., Zarei-Hanzaki, A., and Farghadani, E., Mater. Des. 54, 786 (2014).CrossRefGoogle Scholar
Roy, M., Bandyopadhyay, A., and Bose, S., Characterization of Biomaterials: Chapter 7.2. Mechanical Properties of Bioceramic Coatings on Medical Implants (Elsevier Inc. Chapters, 2013).Google Scholar
Lutolf, M.P. and Hubbell, J.A., Nat. Biotechnol. 23, 47 (2005).CrossRefGoogle Scholar
Moghassemi, S., Hadjizadeh, A., Hakamivala, A., and Omidfar, K., AAPS PharmSciTech 18, 34 (2017).CrossRefGoogle Scholar
Mozafari, M., Kargozar, S., de Santiago, G.T., Rezaa Mohammadi, M., Milan, P.B., Foroutan Koudehi, M., Aghabarari, B., and Nourani, M.R., Materials Technology 33, 29 (2017).CrossRefGoogle Scholar
Beris, A.E., Lykissas, M.G., Papageorgiou, C.D., and Georgoulis, A.D., Injury 36, S14 (2005).CrossRefGoogle Scholar
Najdahmadi, A., Lakey, J., and Botvinick, E., in Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XV. International Society for Optics and Photonics. Volume 10506, p.105061D (2018).Google Scholar
Tønnesen, H.H. and Karlsen, J., Drug Dev. Ind. Pharm. 28, 621 (2002).CrossRefGoogle Scholar
Moghassemi, S., Parnian, E., Hakamivala, A., Darzianiazizi, M., Vardanjani, M.M., Kashanian, S., Larijani, B., and Omidfar, K., Mater. Sci. Eng. C Mater. Biol. Appl. 46, 333 (2015).CrossRefGoogle Scholar
Kuo, C.K. and Ma, P.X., Biomaterials 22, 511 (2001).CrossRefGoogle Scholar
Mørch, Y.A., Donati, I., Strand, B.L., and Skjåk-Braek, G., Biomacromolecules 7, 1471 (2006).CrossRefGoogle Scholar
Okay, O., in Springer Series on Chemical Sensors and Biosensors (2009), pp. 114.Google Scholar
Mazué, G., Newman, A.J., Scampini, G., Della Torre, P., Hard, G.C., Iatropoulos, M.J., Williams, G.M., and Bagnasco, S.M., Toxicol. Pathol. 21, 490 (1993).CrossRefGoogle Scholar
Bouhadir, K.H., Alsberg, E., and Mooney, D.J., Biomaterials 22, 2625 (2001).CrossRefGoogle Scholar
Peters, M.C., Isenberg, B.C., Rowley, J.A., and Mooney, D.J., J. Biomater. Sci. Polym. Ed. 9, 1267 (1998).CrossRefGoogle Scholar
Whalen, G.F., Shing, Y., and Folkman, J., Growth Factors 1, 157 (1989).CrossRefGoogle Scholar
Zimmermann, H., Shirley, S.G., and Zimmermann, U., Curr. Diab. Rep. 7, 314 (2007).CrossRefGoogle Scholar
Grimmer, J.F., Fredrik Grimmer, J., Gunnlaugsson, C.B., Alsberg, E., Murphy, H.S., Kong, H.J., Mooney, D.J., and Weatherly, R.A., Archives of Otolaryngology–Head & Neck Surgery 130, 1191 (2004).CrossRefGoogle Scholar
Calafiore, R., Expert Opin. Biol. Ther. 3, 201 (2003).CrossRefGoogle Scholar
Yoon, J.-W. and Jun, H.-S., Am. J. Ther. 12, 580 (2005).CrossRefGoogle Scholar
de Vos, P, Faas, M.M., Strand, B., and Calafiore, R., Biomaterials 27, 5603 (2006).CrossRefGoogle Scholar
Kummerfeld, G., Krishnan, R., Najdahmadi, A., Botvinick, E., and Lakey, JRT., in Royan International Twin Congress 11th Congress on Stem Cell Biology and Technology, pp. 1920 Volume 17, Supplement 1. (2015)Google Scholar
Goosen, M.F., O’Shea, G.M., Gharapetian, H.M., Chou, S., and Sun, A.M., Biotechnol. Bioeng. 27, 146 (1985).CrossRefGoogle Scholar
Weidling, J., Sameni, S., Lakey, J.R.T., and Botvinick, E., J. Biomed. Opt. 19, 087006 (2014).CrossRefGoogle Scholar
Yazdi, H.S., O’Sullivan, T.D., Leproux, A., Hill, B., Durkin, A., Telep, S., Lam, J., Yazdi, S.S., Police, A.M., Carroll, R.M., Combs, F.J., Strömberg, T., Yodh, A.G., and Tromberg, B.J., J. Biomed. Opt. 22, 045003 (2017).CrossRefGoogle Scholar
Torabzadeh, M., Park, I.-Y., Bartels, R.A., Durkin, A.J., and Tromberg, B.J., J. Biomed. Opt. 22, 30501 (2017).CrossRefGoogle Scholar
Najdahmadi, A., Gurlin, RE., Weidling, J., White, S., Shergill, B., Lakey, JRT., and Botvinick, E., Proc. SPIE Volume 10488, P. 1048847 (2018).Google Scholar
Crank, J., The Mathematics of Diffusion (Oxford University Press, 1979).Google Scholar
Goosen, M.F., O’Shea, G.M., Gharapetian, H.M., Chou, S., and Sun, A.M., Biotechnol. Bioeng. 27, 146 (1985).CrossRefGoogle Scholar
de Vos, P, Hoogmoed, C.G., and Busscher, H.J., J. Biomed. Mater. Res. 60, 252 (2002).CrossRefGoogle Scholar
DiBartola, S.P., Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice (Elsevier Health Sciences, 2011).Google Scholar