Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T03:26:45.887Z Has data issue: false hasContentIssue false

Structural and Optical Studies of InGaN/GaN Superlattices Implanted with Eu Ions

Published online by Cambridge University Press:  07 February 2017

Jingzhou Wang*
Affiliation:
School of Electrical Engineering and Computer Science, Ohio University, Athens OH 45701, U.S.A.
Venkata R. Thota
Affiliation:
Department of Physics and Astronomy, Ohio University, Athens, OH 45701, U.S.A.
Eric A. Stinaff
Affiliation:
Department of Physics and Astronomy, Ohio University, Athens, OH 45701, U.S.A.
Mohammad Ebdah
Affiliation:
Physics and Astronomy Department, King Saud University, Saudi Arabia.
Andre Anders
Affiliation:
Lawrence Berkeley National Laboratory, Plasma Applications Group, Berkeley, CA 94720, U.S.A.
Wojciech M. Jadwisienczak
Affiliation:
School of Electrical Engineering and Computer Science, Ohio University, Athens OH 45701, U.S.A.
*
Get access

Abstract

In0.06Ga0.94N/GaN superlattices (SLs) grown on sapphire (0001) by metalorganic chemical vapor deposition were studied before and after europium (Eu) ion implantation to understand the strain induced-effects in the SL structure. The implanted SLs were investigated as a function of the thermal annealing temperature up to 1000 °C in nitrogen ambient. Temperature dependent photoluminescence spectra showed a red-shift of the SL emission peaks due the quantum confined Stark effect, followed by a blue-shift due to In atoms out-diffusion from the In0.06Ga0.94N quantum well, for both Eu ions implanted and unimplanted SLs. The amplitude of observed spectral shifts was smaller and the line width of the SLs emission peaks were narrower in the SLs:Eu3+ as compared to the unimplanted SLs. It is concluded that Eu3+ ions modified the strain in the SLs acting like impurity and/or defects getter in implantation degraded SLs resulting in material phase purification and improvements of SLs optical properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

O’Donnell, K. and Dierolf, V., Rare-Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications (Springer Netherlands, 2010).Google Scholar
Wang, Y. Q. and Steckl, A. J., Appl. Phys. Lett. 82, 502 (2003).Google Scholar
Nakayama, M., Nakamura, S., Takeuchi, H., Koizumi, A., and Fujiwara, Y., Appl. Phys. Lett. 106, 12102 (2015).Google Scholar
Fujiwara, Y. and Dierolf, V., Jpn. J. Appl. Phys. 53, 05FA13 (2014).Google Scholar
Mezdrogina, M. M., Danilovsky, E. Y., and Kuzmin, R. V., Semiconductors 44, 321 (2010).Google Scholar
Mezdrogina, M. M., Krivolapchuk, V. V., Petrov, V. N., Kozhanova, Y. V., Danilovski, E. Y., and Kuz’min, R. V., Semiconductors 43, 447 (2009).Google Scholar
Mezdrogina, M. M., Moskalenko, E. S., and Kozhanova, Y. V., Phys. Solid State 53, 1680 (2011).Google Scholar
Lozykowski, H. J., Jadwisienczak, W. M., Han, J., and Brown, I. G., Appl. Phys. Lett. 77, 767 (2000).CrossRefGoogle Scholar
Arai, T., Timmerman, D., Wakamatsu, R., Lee, D., Koizumi, A., and Fujiwara, Y., J. Lumin. 158, 70 (2015).Google Scholar
Ion implantation profile modeling was done using Profile Code software from CORE Systems, CA, U.S.A. See more at http://www.coresystems.com/.Google Scholar
Ebdah, M. A., Kordesch, M. E., Anders, A., and Jadwisienczak, W. M., MRS Proc. 1202, I05 (2010).Google Scholar
Jadwisienczak, W. M. and Lozykowski, H. J., Opt. Mater. 23, 175 (2003).Google Scholar
Roqan, I. S., Donnell, K. P. O., Martin, R. W., Edwards, P. R., Song, S. F., Vantomme, A., Lorenz, K., and Alves, E., Phys. Rev. B 81, 85209 (2010).Google Scholar
O’Donnell, K. P., Roqan, I. S., Wang, K., Lorenz, K., Alves, E., and Boćkowski, M., Opt. Mater. 33, 1063 (2011).CrossRefGoogle Scholar
Kudrawiec, R., Nyk, M., Podhorodecki, A., Misiewicz, J., Strek, W., and Wołcyrz, M., Appl. Phys. Lett. 88, (2006).Google Scholar
Chichibu, S. F., Uedono, A., Onuma, T., Haskell, B. A., Chakraborty, A., Koyama, T., Fini, P. T., Keller, S., Denbaars, S. P., Speck, J. S., Mishra, U. K., Nakamura, S., Yamaguchi, S., Kamiyama, S., Amano, H., Isamu, A., Han, J., and Sota, T., Nat. Mater. 5, 810 (2006).Google Scholar
Biswas, D., Kumar, S., and Das, T., Mater. Lett. 61, 5282 (2007).Google Scholar
Lin, Y. S., Ma, K. J., Yang, C. C., and Weirich, T. E., J. Cryst. Growth 242, 35 (2002).CrossRefGoogle Scholar
Kusakabe, K., Hara, T., and Ohkawa, K., J. Appl. Phys. 97, 43503 (2005).Google Scholar
Krivolapchuk, V. V. and Mezdrogina, M. M., Phys. Solid State 48, 2187 (2006).Google Scholar
Wang, J., Dasari, K., Cooper, K., Thota, V. R., Wright, J., Palai, R., Ingram, D. C., Stinaff, E. A., Kaya, S., and Jadwisienczak, W. M., Phys. Status Solidi 12, 413 (2015).Google Scholar
Perevostchikov, V. A. and Skoupov, V. D., Gettering Defects in Semiconductors, 1st ed. (Springer Berlin Heidelberg, 2005).Google Scholar
MacMillan, M. F., Clemen, L. L., Devaty, R. P., Choyke, W. J., Asif Khan, M., Kuznia, J. N., and Krishnankutty, S., J. Appl. Phys. 80, 2378 (1996).Google Scholar
Moses, P. G. and Van de Walle, C. G., Appl. Phys. Lett. 96, 21908 (2010).Google Scholar
Romanov, A. E., Baker, T. J., Nakamura, S., and Speck, J. S., J. Appl. Phys. 100, 23522 (2006).Google Scholar
Wang, J., Optical and Electrical Study of the Rare Earth Doped III-Nitride Semiconductor Materials, Ohio University, 2016.Google Scholar
Kane, M. J., Uren, M. J., Wallis, D. J., Wright, P. J., Soley, D. E. J., Simons, A. J., and Martin, T., Semicond. Sci. Technol. 26, 85006 (2011).CrossRefGoogle Scholar
Mitchell, B., Timmerman, D., Poplawsky, J., Zhu, W., Lee, D., Wakamatsu, R., Takatsu, J., Matsuda, M., Guo, W., Lorenz, K., Alves, E., Koizumi, A., Dierolf, V., and Fujiwara, Y., Sci. Rep. 6, 18808 (2016).Google Scholar
Sawahata, J., Bang, H., Seo, J., and Akimoto, K., Sci. Technol. Adv. Mater. 6, 644 (2005).Google Scholar