Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T03:05:48.247Z Has data issue: false hasContentIssue false

Strong Pseudo Jahn–Teller Effect on the Single Hexagonal Unit of Germanene

Published online by Cambridge University Press:  11 January 2016

J. R. Soto*
Affiliation:
Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70- 646, 04510. México, D.F. México.
B. Molina
Affiliation:
Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70- 646, 04510. México, D.F. México.
J. J. Castro
Affiliation:
Departamento de Física, CINVESTAV del IPN, Apdo. Postal 14-740, 07000 México D.F. México.
*
Get access

Abstract

Germanene, the 2D graphene-like Ge nanosheet, has been recently the subject of many theoretical studies and experimental attempts to synthesize it on Ag(111), Au(111) and Pt(111) surfaces. The experimental and theoretical evidences of germanene show a 2D continuous honeycomb layer with a buckled conformation. Density functional theory (DFT) calculations have predicted a larger buckling for germanene than silicene whose origin is also associated with a pseudo Jahn–Teller (PJT) effect. In this work we show that despite the fact that both, silicene and germanene possess a buckled conformation with a PJT origin, their vibronic coupling have different origins. The analysis is based on the PJT puckering instability of the hexagermabenzene molecule, the single hexagonal unit of germanene. This is done through the linear vibronic coupling model between the ground and the lowest excited states, which leads to a puckering distortion of the more symmetric cluster. We study both, the multilevel superposition vibronic model and possible mixing of excited states of different irreducible representations, which have been used to show the origin of similar structural transitions in hexagonal silicon and gold ring systems respectively. We show that contrary to other cases with one six-member rings, for the hexagermabenzene molecule a mixture of both the multilevel PJT and a ground state coupling with two quasi-degenerate excited states is necessary for a satisfactory explanation of puckering. Our model allows a determination of the coupling constants and predicts simultaneously the Adiabatic Potential Energy Surface (APES) behavior for the ground and excited states around the maximum symmetry point. The analysis is based on a scalar relativistic DFT and time-dependent DFT (TD-DFT) calculations in the Zero Order Regular Approximation (ZORA) using the B3LYP hybrid functional.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M. C., Resta, A., Ealet, B., and Le Lay, G., Physical Review Letters 108, 155501 (2012).Google Scholar
Fleurence, A., Friedlein, R., Ozaki, T., Kawai, H., Wang, Y., and Yamada-Takamura, Y., Physical Review Letters 108, 245501 (2012).Google Scholar
Meng, L. et al. , Nano letters 13, 685 (2013).Google Scholar
Kim, U., Kim, I., Park, Y., Lee, K.-Y., Yim, S.-Y., Park, J.-G., Ahn, H.-G., Park, S.-H., and Choi, H.-J., ACS Nano 5, 2176 (2011).Google Scholar
Vogt, P., Capiod, P., Berthe, M., Resta, A., De Padova, P., Bruhn, T., Le Lay, G., and Grandidier, B., Applied Physics Letters 104, 021602 (2014).CrossRefGoogle Scholar
Tao, L., Cinquanta, E., Chiappe, D., Grazianetti, C., Fanciulli, M., Dubey, M., Molle, A., and Akinwande, D., Nat Nanotechnol. 10, 227 (2015).Google Scholar
Oughaddou, H. et al. , Physical Review B 62, 16653 (2000).Google Scholar
Li, L., Lu, S.-z., Pan, J., Qin, Z., Wang, Y.-q., Wang, Y., Cao, G.-y., Du, S., and Gao, H.-J., Advanced Materials 26, 4820 (2014).CrossRefGoogle Scholar
Dávila, M. E., Xian, L., Cahangirov, S., Rubio, A., and Lay, G. L., New Journal of Physics 16, 095002 (2014).Google Scholar
Derivaz, M., Dentel, D., Stephan, R., Hanf, M. C., Mehdaoui, A., Sonnet, P., and Pirri, C., Nano Letters 15, 2510 (2015).CrossRefGoogle Scholar
Bianco, E., Butler, S., Jiang, S., Restrepo, O. D., Windl, W., and Goldberger, J. E., ACS Nano 7, 4414 (2013).CrossRefGoogle Scholar
Jiang, S. S., Butler, S., Bianco, E., Restrepo, O. D., Windl, W., and Goldberger, J. E., Nature Communications 5, 6, 3389 (2014).Google Scholar
Takeda, K., Shiraishi, K., Physical Review B 50, 14916 (1994).CrossRefGoogle Scholar
Guzmán-Verri, G. G. and Lew Yan Voon, L. C., Physical Review B 76, 075131 (2007).CrossRefGoogle Scholar
Cahangirov, S., Topsakal, M., Aktürk, E., Şahin, H., and Ciraci, S., Physical Review Letters 102, 236804 (2009).CrossRefGoogle Scholar
Roome, N. J. and Carey, J. D., ACS Applied Materials & Interfaces 6, 7743 (2014).CrossRefGoogle Scholar
Nijamudheen, A., Bhattacharjee, R., Choudhury, S., and Datta, A., Journal of Physical Chemistry C 119, 3802 (2015).Google Scholar
Bersuker, I. B., Jahn-Teller Effect (Cambridge Univ Press, Cambridge, 2006),CrossRefGoogle Scholar
Bersuker, I. B., Chemical Reviews 113, 1351 (2013).CrossRefGoogle Scholar
Soto, J. R., Molina, B., and Castro, J. J., Physical Chemistry Chemical Physics 17, 7624 (2015).CrossRefGoogle Scholar
Soto, J. R., Molina, B., and Castro, J. J., RSC Advances 4, 8157 (2014).Google Scholar
ADF 2013, SCM. Theoretical Chemistry, Vrije Universiteit, Amsterdam, Netherlands. (www.scm.com).Google Scholar