Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T11:13:06.580Z Has data issue: false hasContentIssue false

Stress and Fracture of Crystalline Silicon Cells in Solar Photovoltaic Modules – A Synchrotron X-ray Microdiffraction based Investigation

Published online by Cambridge University Press:  02 September 2019

Sasi Kumar Tippabhotla*
Affiliation:
eXtreme Photovoltaics (XPV) Laboratory, Engineering Product Development Pillar, Singapore University of Technology and Design, 8 Somapah Road, Singapore487372
W. J. R. Song
Affiliation:
eXtreme Photovoltaics (XPV) Laboratory, Engineering Product Development Pillar, Singapore University of Technology and Design, 8 Somapah Road, Singapore487372
Anbalagan Subramani
Affiliation:
eXtreme Photovoltaics (XPV) Laboratory, Engineering Product Development Pillar, Singapore University of Technology and Design, 8 Somapah Road, Singapore487372
Camelia V. Stan*
Affiliation:
Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA. USA.
Nobumichi Tamura
Affiliation:
Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA. USA.
Andrew A. O. Tay
Affiliation:
eXtreme Photovoltaics (XPV) Laboratory, Engineering Product Development Pillar, Singapore University of Technology and Design, 8 Somapah Road, Singapore487372
Arief S. Budiman*
Affiliation:
eXtreme Photovoltaics (XPV) Laboratory, Engineering Product Development Pillar, Singapore University of Technology and Design, 8 Somapah Road, Singapore487372
*
*Corresponding Authors: [email protected] (A.S. Budiman), [email protected] (Sasi Kumar)
*Corresponding Authors: [email protected] (A.S. Budiman), [email protected] (Sasi Kumar)
Get access

Abstract

Fracture of crystalline silicon (c-Si) solar cells in photovoltaic modules is a big concern to the photovoltaics (PV) industry. Cell cracks cause performance degradation and warranty issues to the manufacturers. The roots of cell fractures lie in the manufacturing and integration process of the cells and modules as they go through a series of elevated temperature and pressure processes, involving bonding of dissimilar materials, causing residual stresses. Evaluation of the exact physical mechanisms leading to these thermomechanical stresses is highly essential to quantify them and optimize the PV modules to address them. We present a novel synchrotron X-ray microdiffraction based techniques to characterize the stress and fracture in the crystalline silicon PV modules. We show the detailed stress state after soldering and lamination process, using the synchrotron X-ray microdiffraction experiments. We also calculate the maximum tolerable microcrack size in the c-Si cells to sustain the residual stress after lamination. We further demonstrate the effect of these residual stresses on the cell fractures using the widely accepted fracture (4-point bending) tests. These test results show that the soldering and lamination induced localized residual stresses indeed reduce the load-carrying capacity of the c-Si cells.

Type
Articles
Copyright
Copyright © The Authors 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Kajari-Schröder, S., Kunze, I., Eitner, U. and Köntges, M., 37th IEEE PVSC, Seattle, WA, USA, 2011.Google Scholar
K¨ontges, M., Kajari-Schr¨oder, S., Kunze, I., and Jahn, U., 26th EUPVSEC, Hamburg, Germany, 2011.Google Scholar
Köntges, M., Kunze, I., Kajari-Schröder, S., Breitenmoser, X., Bjørneklett, B., Sol. Energy Mater. Sol. Cells, 95(4), 1131-1137 (2011).CrossRefGoogle Scholar
Köntges, M., Kurtz, S., Packard, C., Jahn, U., Berger, K. A., Kato, K., Friesen, T., Liu, H., Iseghem, M. V., Review of Failures of PV Modules, Report: IEA-PVPS T13-01:2014, Photovoltaic Power Systems Program, International Energy Agency.Google Scholar
Abdelhamid, M., Singh, R. and Omar, M., IEEE J. of Photovoltaics, 4(1), 514-524 (2014).CrossRefGoogle Scholar
Gabor, A. M., Ralli, M., Montminy, S., Alegria, L., Bordonaro, C., Woods, J., Felton, L., 21st EUPVSEC, Dreseden, Germany, 2006.Google Scholar
Bennet, I.J. et al., 22nd EUPVSEC, Milan, Italy, 2007.Google Scholar
Wendt, J., Träger, M., Mette, M., Pfennig, A., Jaeckel, B., 24th EUPVSEC, Hamburg, Germany, 2009.Google Scholar
Pingel, S., Zemen, Y., Geipel, T., Berghold, J., 24th EUPVSEC, Hamburg, Germany, 2009.Google Scholar
Sander, M., Dietrich, S., Pander, M., Schweizer, S., Ebert, M., Bagdahn, L., Proceedings of SPIE 8112, Reliability of Photovoltaic Cells, Modules, Components, and Systems IV, 811209, 2011.Google Scholar
Bohne, A.,Schoenfelder, S., Bagdahn, J., 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, 1-5 September, 2008.Google Scholar
Grün, A., Lawerenz, A. , Porytskyy, R., Anspach, O., 26th European Photovoltaic Solar Energy Conference, Hamburg, Germany, Sep. 5–6, 2011.Google Scholar
Wu, H., Melkote, S. N., Danyluk, S., Advanced Engineering Materials14, 342348 (2012).CrossRefGoogle Scholar
Popovich, V.A., Yunus, A., Janssen, M., Richardson, I.M., Bennett, I.J., 95 (1), 97-100 (2011).CrossRefGoogle Scholar
Popovich, V, Riemslag, A, Janssen, M, Bennett, I, Richardson, I., Int. J. Mater. Sci., 9-17 (2013)Google Scholar
Brun, X. F., Melkote, S. N., Sol. Energy Mater. Sol. Cells, 93, 12381247 (2009)CrossRefGoogle Scholar
Ganapati, V., Schoenfelder, S., Castellanos, S., Oener, S., Koepge, R., Sampson, A., Marcus, M. A., Lai, B., Morhenn, H., Hahn, G., Bagdahn, J., Buonassisi, T., J. Appl. Phy., 108, 063528 (2010).CrossRefGoogle Scholar
Sarau, G., Becker, M., Andrä, G., Christiansen, S., 23rd EUPVSEC, Valencia, Spain, 2008.Google Scholar
Popovich, V. A., van der Pers, N. M., Janssen, M., Bennett, I. J., Richardson, I. M., (2011), 37th IEEE PVSC, Seattle, WA, 2011.Google Scholar
Beinert, A. J., Büchler, A., Romer, P., Haueisen, V., Rendler, L. C., Schubert, M. C., Heinrich, M., Aktaa, J., Eitner, U., Sol. Energy Mater. Sol. Cells, 193, 351-360 (2019).CrossRefGoogle Scholar
Budiman, A.S., Illya, G., Handara, V., Caldwell, W.A., Bonelli, C., Kunz, M., Tamura, N., Verstraeten, D., Sol. Energy Mater. Sol. Cells, 130, 303-308 (2014).CrossRefGoogle Scholar
Handara, V.A., Radchenko, I., Tippabhotla, S.K., Narayanan, Karthic. R., Illya, G., Kunz, M., Tamura, N., Budiman, A.S., Sol. Energy Mater. Sol. Cells, 162, 30-40 (2017).CrossRefGoogle Scholar
Tippabhotla, S. K., Radchenko, I., Song, W. J. R., Illya, G., Handara, V., Kunz, M., Tamura, N., Tay, A. A. O. and Budiman, A. S., Prog. Photovolt: Res. Appl., 25, 791809 (2017).CrossRefGoogle Scholar
Tippabhotla, S. K., Radchenko, I., Song, W., Tamura, N., Tay, A. A. O. and Budiman, A. S., 18th IEEE EPTC, Singapore, 734-737 (2016).Google Scholar
Buonassisi, Tonio, Istratov, Andrei A., Marcus, Matthew A., Lai, Barry, Cai, Zhonghou, Heald, Steven M., Weber, Eicke R., Nature Materials, 4, 676679 (2005).CrossRefGoogle Scholar
Bertoni, M. I., Fenning, D. P., Rose, V., Holt, M., Maser, J. and Buonassisi, T., 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, 000154-000156 (2011).CrossRefGoogle Scholar
Popovich, V.A., van der Pers, N. M., Janssen, M., Bennett, I.J., Jansen, K.M.B., Wright, J., Richardson, I.M., 38th IEEE Photovoltaic Specialists Conference, Austin, TX, 000442-000447 (2012).CrossRefGoogle Scholar
Shimura, Takayoshi, Matsumiya, Takuya, Morimoto, Naoki, Hosoi, Takuji, Kajiwara, Kentaro, Chen, Jun, Sekiguchi, Takashi, Watanabe, Heiji, Materials Science Forum, 725, 153-156 (2012).CrossRefGoogle Scholar
Lafford, T A, Villanova, J., Plassat, N., Dubois, S. and Camel, D., J. Phys.: Conf. Ser. 425 192019 (2013).Google Scholar
Colli, A., Attenkofer, K., Raghothamachar, B. and Dudley, M., IEEE J. Photovolt., 6 (5), 1387-1389 (2016).CrossRefGoogle Scholar
Stuckelberger, M., West, B., Nietzold, T., Lai, B., Maser, J., Rose, V., & Bertoni, M., J. Mat. Res., 32(10), 1825-1854 (2017).CrossRefGoogle Scholar
Meng, X., Stuckelberger, M., Hacke, P. and Bertoni, M., IEEE 44th Photovoltaic Specialist Conference, Washington, DC, 2854-2857(2017).Google Scholar
Meng, X., Stuckelberger, M., Ding, L., West, B., Jeffries, A. and Bertoni, M., IEEE J. Photovolt., 8 (1), 189-195 (2018).CrossRefGoogle Scholar
Kunz, M., Tamura, N., Chen, K., MacDowell, A. A., Celestre, R. S., Church, M. M., et al., Rev. Sci. Instr., 80(3), 035108 (2009).CrossRefGoogle Scholar
Tamura, N., Kunz, M., Chen, K., Celestre, R. S., MacDowell, A. A., Warwick, T., Mater. Sci. Eng., A: Stru. Mater.: Prop., Microstr. and Proc., 524, 2832 (2009).CrossRefGoogle Scholar
Tamura, N., in Strain and Dislocation Gradients from Diffraction, edited by Barabash, R. (World Scientific Publishing: Singapore, 2014) p. 125-155.CrossRefGoogle Scholar
Song, W. J. R., Tippabhotla, S. K., Tay, A. A. O. and Budiman, A. S., IEEE J. Photovolt., 8 (1), 210-217 (2018).CrossRefGoogle Scholar
Song, W.J.R., Tippabhotla, S.K., Tay, A.A.O., Budiman, A.S., Sol. Energy Mat. Sol. Cells, 187, 241-248 (2018).CrossRefGoogle Scholar
Ridhuan, S. W., Tippabhotla, S. K., Tay, A. A. and Budiman, A. S. Adv. Eng. Mater., (2019)Google Scholar
Tippabhotla, S. K., Song, W.J.R., Tay, A. A.O., Budiman, A. S., Sol. Energy, 182, 134-147 (2019).CrossRefGoogle Scholar
Dietrich, S, Pander, M, Sander, M, Schulze, SH, Ebert, M, Proc. SPIE 7773, 18 August 2010Google Scholar
Dietrich, Sascha, Pander, Matthias, Sander, Martin, Zeller, Ulli, Ebert, Matthias, Proc. SPIE 8825, 882505, 24 Sep. 2013.CrossRefGoogle Scholar
Eitner, U., Kajari-Schröder, S., Köntges, M., Altenbach, H., In: Altenbach, H., Eremeyev, V. (eds) Shell-like Structures. Advanced Structured Materials, 15, Springer, Berlin, Heidelberg, 2011.Google Scholar
Ebrahimi, F., Kalwani, L., Fracture anisotropy in silicon single crystal, Mater. Sci. Eng. A, 268, 116126 (1999).CrossRefGoogle Scholar
Cook, R. F., J. Mater. Sci., 41, 841872 (2006).CrossRefGoogle Scholar
Masolin, A., Bouchard, P., Martini, R., Bernacki, M., J. Mater. Sci., 48, 979988 (2013).CrossRefGoogle Scholar
Anderson, T. L., Fracture Mechanics: Fundamentals and Applications, 3rd Ed., Talyor & Francis Group, Florida, USA, 2005.CrossRefGoogle Scholar
Kaule, F., Wang, W., Schoenfelder, S., Sol. Energy Mater. Sol. Cells, 120, 441-447 (2014).CrossRefGoogle Scholar
Cereceda, E., Gutiérrez, J.R., Jimeno, J.C., Barredo, J., Fraile, A., Alarcón, E., Ostapenko, S., Martínez, A., Vázquez, M. A., 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 3-7 September 2007.Google Scholar
Kaule, Felix, Pander, Matthias, Turek, Marko, Grimm, Michael, Hofmueller, Eckehard, Schoenfelder, Stephan, SiliconPV-2018, AIP Conf. Proc. 1999, 020013-1–020013-9 (2018)Google Scholar
Sander, Martin, Dietrich, Sascha, Pander, Matthias, Ebert, Matthias, Bagdahn, Jörg, Sol. Energy Mat. Sol. Cells, 111, 82-89 (2013).CrossRefGoogle Scholar
Rowell, Michael W., Daroczi, Shandor G., Harwood, Duncan W.J., Gabor, Andrew M., 4th World Conference on Photovoltaic Energy Conversion (WCPEC-4), Hawaii USA, June 15, 2018.Google Scholar
Fracture Mechanics, ABAQUS Theory Manual, ABAQUS Documentation, Version 6.14, SIMULIA, Dassault Systèmes Simulia Corp., 2015.Google Scholar
Hopcroft, M. A., Nix, W. D. and Kenny, T. W., J. Microelectromechanical Sys., 19 (2), 229-238 (2010).CrossRefGoogle Scholar