Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T12:59:45.596Z Has data issue: false hasContentIssue false

Sonochemically Synthesized ZnO Nanostructured Piezoelectric Layers for Self-Powered Sensor Applications

Published online by Cambridge University Press:  11 February 2019

Fahmida Alam*
Affiliation:
Department of Electrical &Computer Engineering, Florida International University, Miami, FL33174, U.S.A.
Sadegh Mehdi Aghaei
Affiliation:
Department of Electrical &Computer Engineering, Florida International University, Miami, FL33174, U.S.A.
Ahmed Hasnain Jalal
Affiliation:
Department of Electrical &Computer Engineering, Florida International University, Miami, FL33174, U.S.A.
Nezih Pala
Affiliation:
Department of Electrical &Computer Engineering, Florida International University, Miami, FL33174, U.S.A.
*
Get access

Abstract

In this paper, we report on the flexible thin film piezoelectric nanogenerators based on two-dimensional ZnO nanoflakes (NFs) directly deposited onto flexible polyethylene terephthalate (PET) using a simple sonochemical reaction in aqueous solution at room temperature. Our sonochemical synthesis method is a rapid, highly stable, low-cost, and reproducible method, which can be performed at ambient conditions. These advantages of the sonochemical method allow the synthesis of many different ZnO nanostructures. The structural investigations using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) indicated that the ZnO NFs grew with high level of crystallinity and without any thermal damage on the substrates. The fabrication of these device provides a promising solution for developing flexible and self-powered electronic devices particularly wearable and implantable sensors. This ZnO-NFs based nanogenerator provides 62 mV of potential and significant reproducibility having with lower p-value (0.0212).

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tian, B., Zheng, X., Kempa, T. J., Fang, Y., Yu, N., Yu, G., Huang, J., and Lieber, C. M., Nature 449, 885 (2007).CrossRefGoogle Scholar
Li, Z., and Wang, Z. L., Adv. Mater. 23, 84 (2011).CrossRefGoogle Scholar
Wang, Z. L. and Song, J. H., Science 312, 242 (2006).CrossRefGoogle ScholarPubMed
Wang, Z. L., Yang, R., Zhou, J., Qin, Y., Xu, C., Hu, Y., and Xu, S., Mater. Sci. Eng. 70, 320 (2010).CrossRefGoogle Scholar
Alam, F., Sinha, R., Jalal, A. H., Manickam, P., Vabbina, P. K., Bhansali, S. and Pala, N., ECS Trans., 80, 1287-1294 (2017).CrossRefGoogle Scholar
Alam, F., Jalal, A. H., Sinha, R., Umasankar, Y., Bhansali, S. and Pala, N., MRS Adv., 3, 277282 (2018).CrossRefGoogle Scholar
Vabbina, P. K., Karabiyik, M., Al-Amin, C., and Pala, N., Part. Part. Syst. Charact. 31, 190-194(2014).CrossRefGoogle Scholar
Alam, F., Jalal, A. H., Sinha, R., Umasankar, Y., Bhansali, S. and Pala, N., SPIE Def. + Comm. Sens., 10639,106392O-1106392O-6 (2018).Google Scholar
Calzolari, A., and Nardelli, M. B., Sci. Rep. 3, 2999 (2013).CrossRefGoogle Scholar
Al-Ruqeishi, M. S., Mohiuddin, T., Al-Habsi, B., Al-Ruqeishi, F., Al-Fahdi, A., and Al-Khusaibi, A., Arabian J. Chem., 2017.Google Scholar
Shin, S. H., Kwon, Y. H., Lee, M. H., Jung, J. Y., and Seol, J. H., Nanoscale 8, 1314-21 (2016).CrossRefGoogle Scholar
Gullapalli, H., Vemuru, V. S. M., Kumar, A., Mendez, A. B., Vajtai, R., Terrones, M., Nagarajaiah, S. and Ajayan, P. M., small 15, 1641-46 (2010)CrossRefGoogle Scholar
Didomenico, A. and Nussbaum, M. A., Ergonomics, 46, 1531-48 (2010).CrossRefGoogle Scholar