Published online by Cambridge University Press: 25 March 2018
Low dimensional lead halide perovskite particles are of tremendous interest due to their size-tunable band gaps, low exciton binding energy, high absorption coefficients, outstanding quantum and photovoltaic efficiencies. Herein we report a new solution-based synthesis of stabilized Cs4PbBr6 perovskite particles with high luminescence. This method requires only mild conditions and produces colloidal particles that are ideal for highly efficient solution-based device fabrications. The synthesized microstructures not only display outstanding luminescence quantum yield but also long term stability in atmospheric conditions. Partial halide substitutions were also demonstrated to extend photoluminescence spectra of the perovskite particles. This convenient synthesis and optical tunability of Cs4PbBr6 perovskite particles will be advantageous for future applications of optoelectronic advices.